The auxiliary equation is 9m2+1=0, which gives m=±31.
The complementary function is C.F=c1e−3x+c2e3x .
The particular integral is given by,
P.I=Pf1+Qf2 , where f1=e−3x,f2=e3x and
P=−∫W(f1,f2)f2Xdx, Q=∫W(f1,f2)f1Xdx and X=xe3x.
Now,
W(f1,f2)=f1f2′−f1′f2 =e−3x⋅3e3x−3−e−3x⋅e3x=32
P=−∫W(f1,f2)f2Xdx=−∫32e3x⋅xe3xdx =−23∫xe32xdx=−23{32xe32x−94e32x} =23{49e32x−23xe32x}=89e32x(3−2x)
Q=∫W(f1,f2)f1Xdx=∫32e−3x⋅xe3xdx=43x2
Therefore,
P.I=Pf1+Qf2 =89e32x(3−2x)⋅e−3x+43x2⋅e3x =83e3x(2x2−6x+9)
Thus,
y=c1e−3x+c2e3x+83e3x(2x2−6x+9)
Given the initial condition, y(0)=1,y′(0)=0.
Using these conditions we get,
c1+c2=−819 −c1+c2=827
Solving, we get c1=−823,c2=21 and hence
y=−823e−3x+21e3x+83e3x(2x2−6x+9) =81e3x(6x2−18x+31)−823e−3x
Comments