The auxiliary equation is "9m^2+1=0", which gives "m = \\pm\\dfrac{1}{3}."
The complementary function is "C.F = c_{1}e^{-\\frac{x}{3}}+c_{2}e^{\\frac{x}{3}}" .
The particular integral is given by,
"P.I = Pf_{1}+Qf_{2}" , where "f_{1} = e^{-\\frac{x}{3}}, f_{2} = e^{\\frac{x}{3}}" and
"P=-\\displaystyle\\int \\dfrac{f_{2}X}{W(f_{1},f_{2})}dx", "Q=\\displaystyle\\int \\dfrac{f_{1}X}{W(f_{1},f_{2})}dx~ \\text{and}~ X = xe^{\\frac{x}{3}}".
Now,
"W(f_{1},f_{2}) = f_{1}f'_{2}-f'_{1}f_{2} \\\\ ~~~~~~~~~~~~~~~~~~= e^{-\\frac{x}{3}} \\cdot \\frac{e^{\\frac{x}{3}}}{3} - \\frac{-e^{-\\frac{x}{3}}}{3} \\cdot e^{\\frac{x}{3}} = \\frac{2}{3}"
"P=-\\displaystyle\\int \\dfrac{f_{2}X}{W(f_{1},f_{2})}dx\n=-\\displaystyle\\int \\dfrac{e^{\\frac{x}{3}} \\cdot xe^{\\frac{x}{3}}}{\\frac{2}{3}}dx\\\\\n~~~~=-\\dfrac{3}{2}\\displaystyle\\int xe^{\\frac{2x}{3}}dx =-\\dfrac{3}{2}\\biggl\\{\\frac{xe^{\\frac{2x}{3}}}{\\frac{2}{3}} - \\dfrac{e^{\\frac{2x}{3}}}{\\frac{4}{9}}\\biggr\\}\\\\\n~~~~=\\dfrac{3}{2}\\biggl\\{\\dfrac{9}{4}{e^{\\frac{2x}{3}}} - \\dfrac{3}{2}{xe^{\\frac{2x}{3}}} \\biggr\\}=\\dfrac{9}{8}e^{\\frac{2x}{3}}(3-2x)"
"Q=\\displaystyle\\int \\dfrac{f_{1}X}{W(f_{1},f_{2})}dx = \\displaystyle\\int \\dfrac{e^{-\\frac{x}{3}} \\cdot xe^{\\frac{x}{3}}}{\\frac{2}{3}}dx = \\dfrac{3}{4}x^{2}"
Therefore,
"P.I = Pf_{1}+Qf_{2} \\\\~~~~~~~= \\dfrac{9}{8}e^{\\frac{2x}{3}}(3-2x) \\cdot e^{-\\frac{x}{3}} + \\dfrac{3}{4}x^{2} \\cdot e^{\\frac{x}{3}} \\\\~~~~~~~~~=\\dfrac{3}{8}e^{\\frac{x}{3}}(2x^{2}-6x+9)"
Thus,
"y = c_{1}e^{-\\frac{x}{3}} + c_{2}e^{\\frac{x}{3}} + \\dfrac{3}{8}e^{\\frac{x}{3}}(2x^{2}-6x+9)"
Given the initial condition, "y(0) = 1, y'(0)=0."
Using these conditions we get,
"c_{1}+c_{2} = -\\frac{19}{8}\\\\~\n-c_{1}+c_{2}=\\frac{27}{8}"
Solving, we get "c_{1} = -\\frac{23}{8}, c_{2}=\\frac{1}{2}" and hence
"y = -\\dfrac{23}{8}e^{-\\frac{x}{3}} + \\dfrac{1}{2}e^{\\frac{x}{3}} + \\dfrac{3}{8}e^{\\frac{x}{3}}(2x^{2}-6x+9)\\\\\n~\\\\~~~=\\dfrac{1}{8}e^{\\frac{x}{3}}(6x^{2}-18x+31)-\\dfrac{23}{8}e^{-\\frac{x}{3}}"
Comments
Leave a comment