Question #122609
Solve the differential equation by variation of parameters, subject to the initial conditions
y(0) = 1, y'(0) = 0.

9y'' − y = x(e^x/3)

y(x) = ____
1
Expert's answer
2020-06-29T18:52:38-0400

The auxiliary equation is 9m2+1=09m^2+1=0, which gives m=±13.m = \pm\dfrac{1}{3}.

The complementary function is C.F=c1ex3+c2ex3C.F = c_{1}e^{-\frac{x}{3}}+c_{2}e^{\frac{x}{3}} .

The particular integral is given by,

P.I=Pf1+Qf2P.I = Pf_{1}+Qf_{2} , where f1=ex3,f2=ex3f_{1} = e^{-\frac{x}{3}}, f_{2} = e^{\frac{x}{3}} and


P=f2XW(f1,f2)dxP=-\displaystyle\int \dfrac{f_{2}X}{W(f_{1},f_{2})}dx, Q=f1XW(f1,f2)dx and X=xex3Q=\displaystyle\int \dfrac{f_{1}X}{W(f_{1},f_{2})}dx~ \text{and}~ X = xe^{\frac{x}{3}}.

Now,

W(f1,f2)=f1f2f1f2                  =ex3ex33ex33ex3=23W(f_{1},f_{2}) = f_{1}f'_{2}-f'_{1}f_{2} \\ ~~~~~~~~~~~~~~~~~~= e^{-\frac{x}{3}} \cdot \frac{e^{\frac{x}{3}}}{3} - \frac{-e^{-\frac{x}{3}}}{3} \cdot e^{\frac{x}{3}} = \frac{2}{3}


P=f2XW(f1,f2)dx=ex3xex323dx    =32xe2x3dx=32{xe2x323e2x349}    =32{94e2x332xe2x3}=98e2x3(32x)P=-\displaystyle\int \dfrac{f_{2}X}{W(f_{1},f_{2})}dx =-\displaystyle\int \dfrac{e^{\frac{x}{3}} \cdot xe^{\frac{x}{3}}}{\frac{2}{3}}dx\\ ~~~~=-\dfrac{3}{2}\displaystyle\int xe^{\frac{2x}{3}}dx =-\dfrac{3}{2}\biggl\{\frac{xe^{\frac{2x}{3}}}{\frac{2}{3}} - \dfrac{e^{\frac{2x}{3}}}{\frac{4}{9}}\biggr\}\\ ~~~~=\dfrac{3}{2}\biggl\{\dfrac{9}{4}{e^{\frac{2x}{3}}} - \dfrac{3}{2}{xe^{\frac{2x}{3}}} \biggr\}=\dfrac{9}{8}e^{\frac{2x}{3}}(3-2x)


Q=f1XW(f1,f2)dx=ex3xex323dx=34x2Q=\displaystyle\int \dfrac{f_{1}X}{W(f_{1},f_{2})}dx = \displaystyle\int \dfrac{e^{-\frac{x}{3}} \cdot xe^{\frac{x}{3}}}{\frac{2}{3}}dx = \dfrac{3}{4}x^{2}


Therefore,

P.I=Pf1+Qf2       =98e2x3(32x)ex3+34x2ex3         =38ex3(2x26x+9)P.I = Pf_{1}+Qf_{2} \\~~~~~~~= \dfrac{9}{8}e^{\frac{2x}{3}}(3-2x) \cdot e^{-\frac{x}{3}} + \dfrac{3}{4}x^{2} \cdot e^{\frac{x}{3}} \\~~~~~~~~~=\dfrac{3}{8}e^{\frac{x}{3}}(2x^{2}-6x+9)

Thus,

y=c1ex3+c2ex3+38ex3(2x26x+9)y = c_{1}e^{-\frac{x}{3}} + c_{2}e^{\frac{x}{3}} + \dfrac{3}{8}e^{\frac{x}{3}}(2x^{2}-6x+9)


Given the initial condition, y(0)=1,y(0)=0.y(0) = 1, y'(0)=0.

Using these conditions we get,

c1+c2=198 c1+c2=278c_{1}+c_{2} = -\frac{19}{8}\\~ -c_{1}+c_{2}=\frac{27}{8}

Solving, we get c1=238,c2=12c_{1} = -\frac{23}{8}, c_{2}=\frac{1}{2} and hence


y=238ex3+12ex3+38ex3(2x26x+9)    =18ex3(6x218x+31)238ex3y = -\dfrac{23}{8}e^{-\frac{x}{3}} + \dfrac{1}{2}e^{\frac{x}{3}} + \dfrac{3}{8}e^{\frac{x}{3}}(2x^{2}-6x+9)\\ ~\\~~~=\dfrac{1}{8}e^{\frac{x}{3}}(6x^{2}-18x+31)-\dfrac{23}{8}e^{-\frac{x}{3}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS