y′′−3y′+2y=7e3x,y1=ex.
We use a substitution: y=y1z=exz
y′=(exz)′=ex(z+z′).
y′′=[ex(z+z′)]′=ex(z+2z′+z′′).
Substituting the derivatives in the equation and reducing by ex , we have
z+2z′+z′′−3(z+z′)+2z=7e2x→z′′−z′=7e2x
We use a substitution: z′=u.
dxdu−u=7e2x. Let t(x)=e−x . Multiply both sides by t(x).
e−xu′−dxd(e−x)u=7ex→dxd(e−x)u=7ex
∫dxd(e−xu)dx=∫7exdx→e−xu=7ex+C1→u(x)=ex(7ex+C1)
z=∫udx=∫ex(7ex+C1)=27e2x+C1ex+C2
y=exz=ex(27e2x+C1ex+C2)
Answer: y2=C2e2x, the general solution is y=ex(27e2x+C1ex+C2).
Comments