Question #122608
The indicated function y1(x) is a solution of the associated homogeneous equation. Use the method of reduction of order to find a second solution y2(x) of the homogeneous equation and a particular solution yp(x) of the given nonhomogeneous equation.

y'' − 3y' + 2y = 7e^3x; y1 = e^x

y1(x) = ____
yp(x) = _____
1
Expert's answer
2020-06-29T17:48:14-0400

y3y+2y=7e3x,y1=ex.y''-3y'+2y=7e^{3x}, y_1=e^x.

We use a substitution: y=y1z=exzy=y_1z=e^xz

y=(exz)=ex(z+z).y'=(e^xz)'=e^x(z+z').

y=[ex(z+z)]=ex(z+2z+z).y''=[e^x(z+z')]'=e^x(z+2z'+z'').

Substituting the derivatives in the equation and reducing by exe^x , we have

z+2z+z3(z+z)+2z=7e2xzz=7e2xz+2z'+z''-3(z+z')+2z=7e^{2x}\to z''-z'=7e^{2x}

We use a substitution: z=u.z'=u.

dudxu=7e2x\frac{du}{dx}-u=7e^{2x}. Let t(x)=ext(x)=e^{-x} . Multiply both sides by t(x)t(x).

exud(ex)dxu=7exd(ex)udx=7exe^{-x}u'-\frac{d(e^{-x})}{dx}u=7e^x \to \frac{d(e^{-x})u}{dx}=7e^{x}

d(exu)dxdx=7exdxexu=7ex+C1u(x)=ex(7ex+C1)\int \frac{d(e^{-x}u)}{dx}dx=\int7e^{x}dx \to e^{-x}u=7e^{x}+C_1\to u(x)=e^x(7e^{x}+C_1)

z=udx=ex(7ex+C1)=7e2x2+C1ex+C2z= \int udx= \int e^{x}(7e^{x}+C_1)=\frac{7e^{2x}}{2}+C_1e^x+C_2

y=exz=ex(7e2x2+C1ex+C2)y=e^xz=e^x(\frac{7e^{2x}}{2}+C_1e^x+C_2)

Answer: y2=C2e2xy_2=C_2e^{2x}, the general solution is y=ex(7e2x2+C1ex+C2)y=e^x(\frac{7e^{2x}}{2}+C_1e^x+C_2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS