Question #122706
solve y'+y= 1 by power series solution method
1
Expert's answer
2020-06-17T18:58:08-0400

Let power series solution of given differential equation be y=n=0cnxny= \sum_{n=0}^{\infin} c_nx^n .

    y=n=1ncnxn1\implies y'= \sum_{n=1}^{\infin} nc_nx^{n-1} .

By putting in given differential equation, we got

n=1ncnxn1+n=0cnxn=1\sum_{n=1}^{\infin}n c_nx^{n-1}+ \sum_{n=0}^{\infin} c_nx^n = 1

    n=0(n+1)cn+1xn+n=0cnxn=1    n=0((n+1)cn+1+cn)xn=1\implies \sum_{n=0}^{\infin}(n+1) c_{n+1}x^{n}+ \sum_{n=0}^{\infin} c_nx^n = 1 \\ \implies \sum_{n=0}^{\infin}((n+1) c_{n+1}+c_n)x^{n}=1

Now, by comparing the coefficient on both sides we get,

c1+c0=1, and (n+1)cn+1+cn=0 n2    cn+1=cnn+1c_1+c_0 = 1 , \ and \ (n+1) c_{n+1} + c_n = 0 \ \forall n\geq 2 \implies c_{n+1} = -\frac{c_n}{n+1}

    c1=1c0,c2=c12=c012,c3=c23=c013!,c4=c014!\implies c_1=1-c_0, c_2 =- \frac{c_1}{2} = \frac{c_0-1}{2}, c_3 = \frac{c_2}{3} = \frac{c_0-1}{3!}, c_4= \frac{c_0-1}{4!} and so on.


So, power series solution of given differential equation is

y=c0+(1c0)x+c012!x2+c013!x3+...y= c_0+(1-c_0)x + \frac{c_0-1}{2!} x^2 + \frac{c_0-1}{3!} x^3+ ...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS