Let power series solution of given differential equation be y=∑n=0∞cnxn .
⟹y′=∑n=1∞ncnxn−1 .
By putting in given differential equation, we got
∑n=1∞ncnxn−1+∑n=0∞cnxn=1
⟹∑n=0∞(n+1)cn+1xn+∑n=0∞cnxn=1⟹∑n=0∞((n+1)cn+1+cn)xn=1
Now, by comparing the coefficient on both sides we get,
c1+c0=1, and (n+1)cn+1+cn=0 ∀n≥2⟹cn+1=−n+1cn
⟹c1=1−c0,c2=−2c1=2c0−1,c3=3c2=3!c0−1,c4=4!c0−1 and so on.
So, power series solution of given differential equation is
y=c0+(1−c0)x+2!c0−1x2+3!c0−1x3+...
Comments