The given equation can be written as:
(4D2-8D+8)y = exsecx
complementary equation is:
4D2-8D+8=0
D=4+4i,4-4i
Since they are complex roots, general solution is
y= e4x(acos4x + bsin4x)
Particular solution by variation of parameters:
Let z=e4xcos4x and u= e4xsin4x
Wronskian(z,u) ="\\begin{vmatrix}\n e^{4x}cos4x & e^{4x}sin4x \\\\\n 4e^{4x}cos4x - 4e^{4x}sin4x & 4e^{4x}sin4x + 4e^{4x}cos4x\n\\end{vmatrix}"
=4e4x(sin24x+cos24x)=4e4x
Particular solution is
=-z("\\int (u\/W) dt+u(\\int(z\/W)dt"
= -e4xcos4x ("\\int (e^{4x}sin4x\/4e^{4x})" "+e^{4x}sin4x (\\int(e^{4x}cos4x \/4e^{4x})"
="-e^{4x}cos4x (-cos4x\/16) + e^{4x}sin4x (sin4x\/16)+c"
So the solution is
y=
e4x(acos4x + bsin4x)+ "-e^{4x}cos4x (-cos4x\/16) + e^{4x}sin4x (sin4x\/16)+c"
Comments
Leave a comment