The given equation can be written as:
(4D2-8D+8)y = exsecx
complementary equation is:
4D2-8D+8=0
D=4+4i,4-4i
Since they are complex roots, general solution is
y= e4x(acos4x + bsin4x)
Particular solution by variation of parameters:
Let z=e4xcos4x and u= e4xsin4x
Wronskian(z,u) =∣∣e4xcos4x4e4xcos4x−4e4xsin4xe4xsin4x4e4xsin4x+4e4xcos4x∣∣
=4e4x(sin24x+cos24x)=4e4x
Particular solution is
=-z(∫(u/W)dt+u(∫(z/W)dt
= -e4xcos4x (∫(e4xsin4x/4e4x) +e4xsin4x(∫(e4xcos4x/4e4x)
=−e4xcos4x(−cos4x/16)+e4xsin4x(sin4x/16)+c
So the solution is
y=
e4x(acos4x + bsin4x)+ −e4xcos4x(−cos4x/16)+e4xsin4x(sin4x/16)+c
Comments