Question #122613
Solve the differential equation by variation of parameters.
4y'' − 8y' + 8y = e^x sec x

y(x) =______
1
Expert's answer
2020-07-01T17:13:25-0400

The given equation can be written as:

(4D2-8D+8)y = exsecx


complementary equation is:

4D2-8D+8=0

D=4+4i,4-4i

Since they are complex roots, general solution is

y= e4x(acos4x + bsin4x)

Particular solution by variation of parameters:

Let z=e4xcos4x and u= e4xsin4x

Wronskian(z,u) =e4xcos4xe4xsin4x4e4xcos4x4e4xsin4x4e4xsin4x+4e4xcos4x\begin{vmatrix} e^{4x}cos4x & e^{4x}sin4x \\ 4e^{4x}cos4x - 4e^{4x}sin4x & 4e^{4x}sin4x + 4e^{4x}cos4x \end{vmatrix}

=4e4x(sin24x+cos24x)=4e4x


Particular solution is

=-z((u/W)dt+u((z/W)dt\int (u/W) dt+u(\int(z/W)dt


= -e4xcos4x ((e4xsin4x/4e4x)\int (e^{4x}sin4x/4e^{4x}) +e4xsin4x((e4xcos4x/4e4x)+e^{4x}sin4x (\int(e^{4x}cos4x /4e^{4x})

=e4xcos4x(cos4x/16)+e4xsin4x(sin4x/16)+c-e^{4x}cos4x (-cos4x/16) + e^{4x}sin4x (sin4x/16)+c

So the solution is

y=

e4x(acos4x + bsin4x)+ e4xcos4x(cos4x/16)+e4xsin4x(sin4x/16)+c-e^{4x}cos4x (-cos4x/16) + e^{4x}sin4x (sin4x/16)+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS