Let, solution is
y=n=0∑∞anxn Thus,
y′=n=1∑∞anxn−1 Hence, on simplification the differential equation
y′=y+x We get,
a0=a1,a2=2a0+1,a3=6a0+1 and
an−1an=n1,∀n≥3 Thus,
an=n!6,∀n≥3 Hence, solution will be,
y=a0+a1x+(2a0+1)x2+(a0+1)n=3∑∞n!1⟹y=a0+a1x+(2a0+1)x2+(a0+1)(ex−1−x−21x2)y=(a0+1)ex−x−1
Comments