Question #123098
solve y'=x+y by power series method of solution
1
Expert's answer
2020-06-21T16:52:42-0400

Let, solution is

y=n=0anxny=\sum_{n=0}^{\infty}a_nx^n

Thus,

y=n=1anxn1y'=\sum_{n=1}^{\infty}a_nx^{n-1}

Hence, on simplification the differential equation

y=y+xy'=y+x

We get,

a0=a1,a2=a0+12,a3=a0+16a_0=a_1,a_2=\frac{a_0+1}{2}, a_3=\frac{a_0+1}{6}

and

anan1=1n,n3\frac{a_n}{a_{n-1}}=\frac{1}{n}, \forall n\geq 3

Thus,

an=6n!,n3a_n=\frac{6}{n!}, \forall n\geq 3

Hence, solution will be,

y=a0+a1x+(a0+12)x2+(a0+1)n=31n!    y=a0+a1x+(a0+12)x2+(a0+1)(ex1x12x2)y=(a0+1)exx1y=a_0+a_1x+(\frac{a_0+1}{2})x^2+(a_0+1)\sum_{n=3}^{\infty}\frac{1}{n!}\\ \implies y=a_0+a_1x+(\frac{a_0+1}{2})x^2+(a_0+1)(e^x-1-x-\frac{1}{2}x^2)\\ y=(a_0+1)e^x-x-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS