Question #124033

Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).

(i)dy/dt=(1+t²)/t , y(t = 1) = 0

(ii) (t + 1) dy/dt = 1- y , y(t = 0) = 3 [Hint: Let A = -(±e^(-c))]


1
Expert's answer
2020-06-29T18:26:32-0400

(i) Given

dydt=(1+t2)t\frac {dy} {dt} = \frac{(1+t^2)}{t}


integrating both sides, 

dy=(1+t2t)dt\int dy = \int (\frac{1+t^2}{t}) dt


solving it, we obtain y=lnt+12t2+Cy = lnt + \frac{1}{2}t^2 +C

applying the condition, y(t=1) = 0 

c=12c = -\frac{1}{2}

so equation will be,

y=lnt+12t212y = lnt + \frac{1}{2}t^2 -\frac{1}{2}

 Domain of y is [0,)[0,\infin)

 

(ii) Given (t+1)dydt=1y(t+1)\frac{dy}{dt} = 1-y

integrating on both sides, 

dy1y=dt1+t\int\frac{dy}{1-y} = \int\frac{dt}{1+t}

ln(1t)=ln(1+t)+lnC-ln(1-t) = ln (1+t)+lnC

applying the condition, y(t=0) = 3

C=12C = -\frac{1}{2}


so equation will be, 

y=1+21+t=t+3t+1y = 1 + \frac{2}{1+t} = \frac{t+3}{t+1}

Domain for y is R\R  - {1}         where R\R is real number.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS