"T_s = 50^\\circ C" - starting temperature;
"T_0 = 5^\\circ C" - refrigerator's temperature;
"T_1 = 20^\\circ C" - after "t_1 = 0.5" hours;
"T_2 = 10^\\circ C" - after "t_2 = ?"
"\\dfrac{dT}{dt} = \\alpha(T-T_0)"
"\\dfrac{dT}{T-T_0} = \\alpha dt"
"\\int\\limits_{T_s}^{T_1} \\dfrac {dT}{T-T_0} = \\int\\limits_{0}^{t_1}\\alpha dt \\Rightarrow ln \\dfrac{T_1 - T_0}{T_s - T_0} = \\alpha t_1"
"\\int\\limits_{T_s}^{T_2} \\dfrac {dT}{T-T_0} = \\int\\limits_{0}^{t_2}\\alpha dt \\Rightarrow ln \\dfrac{T_2 - T_0}{T_s - T_0} = \\alpha t_2"
Then "ln \\dfrac{20 - 5}{50 - 5} = \\alpha t_1= ln \\dfrac{1}{3}" ; "ln \\dfrac{10 - 5}{50 - 5} = \\alpha t_2= ln \\dfrac{1}{9} = ln(\\dfrac{1}{3})^2 = 2ln\\dfrac{1}{3} = 2 \\alpha t_1";
Therefore, "\\alpha t_2 = 2 \\alpha t_1 \\Rightarrow t_2 = 2t_1 = 2 \\cdot0,5 hours = 1 hour" (or 0.5 hours after the first measuring)
Comments
Leave a comment