Question #124134
Verify that the given family of functions solves the differential equation.
dy/dt = (1-2t) y² , y = 1 / (C - t + t² )

dy/dt = y² sin(t) , y = 1 / (C +cos(t))
1
Expert's answer
2020-07-02T19:30:23-0400

dydt=(12t)y2dyy2=(12t)dt1y=tt2Cy=1(Ct+t2)dydt=y2sin(t)dyy2=sin(t)dt1y=cos(t)Cy=1C+cos(t)\dfrac{dy}{dt}=(1-2t)y^2\newline \dfrac{dy}{y^2}=(1-2t)*dt\newline \dfrac{-1}{y}=t-t^2-C\newline y=\dfrac{1}{(C-t+t^2)}\newline \dfrac{dy}{dt}=y^2*\sin{(t)}\newline \dfrac{dy}{y^2}=\sin{(t)}*dt\newline \dfrac{-1}{y}=-\cos{(t)}-C\newline y=\dfrac{1}{C+\cos{(t)}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS