Question #124424
Solve (b-c/a)yzp+(c-a/b)xzq=(a-b/c)xy.
1
Expert's answer
2020-06-30T07:53:35-0400

dx(bc/a)yz=dy(ca/b)xz=dz(ab/c)xy\frac {dx}{(b-c/a)yz}=\frac {dy}{(c-a/b)xz}=\frac {dz}{(a-b/c)xy}

xdx+ydy+zdzxyz(bc/a+ca/b+ab/c)=dx(bc/a)yz\frac {xdx+ydy+zdz}{xyz(b-c/a+c-a/b+a-b/c)}=\frac {dx}{(b-c/a)yz}

x2+y2+z2bc/a+ca/b+ab/c=x2bc/a+C1\frac {x^2+y^2+z^2}{b-c/a+c-a/b+a-b/c}=\frac {x^2}{b-c/a}+C_1


xdx+ydy+zdzxyz(bc/a+ca/b+ab/c)=dy(ca/b)xz\frac {xdx+ydy+zdz}{xyz(b-c/a+c-a/b+a-b/c)}=\frac {dy}{(c-a/b)xz}

x2+y2+z2bc/a+ca/b+ab/c=y2ca/b+C2\frac {x^2+y^2+z^2}{b-c/a+c-a/b+a-b/c}=\frac {y^2}{c-a/b}+C_2


xdx+ydy+zdzxyz(bc/a+ca/b+ab/c)=dz(ab/c)xy\frac {xdx+ydy+zdz}{xyz(b-c/a+c-a/b+a-b/c)}=\frac {dz}{(a-b/c)xy}

x2+y2+z2bc/a+ca/b+ab/c=z2ab/c+C3\frac {x^2+y^2+z^2}{b-c/a+c-a/b+a-b/c}=\frac {z^2}{a-b/c}+C_3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS