Question #124154

Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).

(i) dy

dt = 1+t2

t ; y(t = 1) = 0:


1
Expert's answer
2020-06-29T18:25:01-0400

dydt=1+t2 y(t)=(t2+1)dty(t)=13t3+t+C1.\frac{dy}{dt}=1+t^2\to\ y(t)=\int(t^2+1)dt\to y(t)=\frac{1}{3}t^3+t+C_1.

We take into account the initial conditions y(1)=0C1+43=0C1=43.y(1)=0\to C_1 +\frac{4}{3}=0\to C_1=-\frac{4}{3}.

SubstituteC1=43Substitute C_1 =-\frac{4}{3} into y(t)=t33+t+C1.Answer:y(t)=13(t3+3t4).y(t)=\frac{t^3}{3}+t+C_1. Answer: y(t)=\frac{1}{3}(t^3+3t-4). yR

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS