Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).
(i) dy
dt = 1+t2
t ; y(t = 1) = 0:
"\\frac{dy}{dt}=1+t^2\\to\\ y(t)=\\int(t^2+1)dt\\to y(t)=\\frac{1}{3}t^3+t+C_1."
We take into account the initial conditions "y(1)=0\\to C_1 +\\frac{4}{3}=0\\to C_1=-\\frac{4}{3}."
"Substitute C_1 =-\\frac{4}{3}" into "y(t)=\\frac{t^3}{3}+t+C_1. Answer: y(t)=\\frac{1}{3}(t^3+3t-4)." y∈R
Comments
Leave a comment