Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).
(i) dy
dt = 1+t2
t ; y(t = 1) = 0:
dydt=1+t2→ y(t)=∫(t2+1)dt→y(t)=13t3+t+C1.\frac{dy}{dt}=1+t^2\to\ y(t)=\int(t^2+1)dt\to y(t)=\frac{1}{3}t^3+t+C_1.dtdy=1+t2→ y(t)=∫(t2+1)dt→y(t)=31t3+t+C1.
We take into account the initial conditions y(1)=0→C1+43=0→C1=−43.y(1)=0\to C_1 +\frac{4}{3}=0\to C_1=-\frac{4}{3}.y(1)=0→C1+34=0→C1=−34.
SubstituteC1=−43Substitute C_1 =-\frac{4}{3}SubstituteC1=−34 into y(t)=t33+t+C1.Answer:y(t)=13(t3+3t−4).y(t)=\frac{t^3}{3}+t+C_1. Answer: y(t)=\frac{1}{3}(t^3+3t-4).y(t)=3t3+t+C1.Answer:y(t)=31(t3+3t−4). y∈R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments