"m=0.25" kg
"L=0.01568" m
"u(0)=0, \\ u^{\\prime}(0)=0.2" m/s, where "u(t)" is position of the mass at any time "t."
"k=\\frac{mg}{L}=\\frac{0.25\\times 9.8}{0.01568}=156.25" N/m
Now we can write the equation of the system: "mu^{\\prime \\prime }+ku =0"
"0.25u^{\\prime \\prime }+156.25u =0"
"u^{\\prime \\prime }+625u =0"
The characteristic equation: "r^2+625=0, \\ \\ r=\\pm25i" .
The general solution is "\\ u(t)=C_1\\sin(25t)+C_2\\cos(25t)"
"u(0)=0=C_1\\times 0+C_2\\times 1=C_2" , "C_2=0"
"u^{\\prime }(0)=0.2=25C_1" , "C_1=0.008"
So, "u(t)=0.008\\sin (25t)" m.
Equilibrium position: "u(t)=0, \\ \\ 0.008\\sin(25t)=0, \\ \\ \\sin(25t)=0, \\ \\ 25t=\\pi n, \\ n\\in \\mathbb{Z}" .
The mass first return to its equilibrium position when "n=1" or "t=\\pi\/25."
Answer:
a. "u(t)=0.008\\sin (25t)" m.
b. "t=\\pi\/25" s.
Comments
Leave a comment