Solution:
1.y′′′−6y′′−36y′+216y=0
k3-6k2-36k+216=0
k2(k-6)-36(k-6)=0
(k-6)(k2-36)=0
(k-6)2(k+6)=0
k1=k2=6,k3=-6
y(t)=C1e6t+C2te6t+C3e-6t
2.y′′′−4y′ = te-2t + 3cos(2t)
k3-4k=0
k(k2-4)=0
k(k-2)(k+2)=0
k1=-2, k2=0, k3=2
y0(t)=C1e-2t+C2+C3e2t
yp1(t)=(Jt2+Kt)e-2t
yp2(t)=Lcos(2t)+Msin(2t)
y(t)=C1e-2t+C2+C3e2t+(Jt2+Kt)e-2t+Lcos(2t)+Msin(2t)
Answer:
1.y(t)=C1e6t+C2te6t+C3e-6t
2.y(t)=C1e-2t+C2+C3e2t+(Jt2+Kt)e-2t+Lcos(2t)+Msin(2t)
Comments
Leave a comment