Question #125700

Solve (y-z/yz)p+(z-x/xy)q=x-y/yx


1
Expert's answer
2020-07-09T17:14:30-0400

The given problem must be, yzyzp+zxxzq=xyyx\dfrac{y-z}{yz}p+\dfrac{z-x}{xz}q=\dfrac{x-y}{yx} .


This problem can be written as, x(yz)p+y(zx)q=z(xy)x(y-z)p+y(z-x)q=z(x-y).

The subsidiary equations are,

dxx(yz)=dyy(zx)=dzz(xy)\dfrac{dx}{x(y-z)} = \dfrac{dy}{y(z-x)} =\dfrac{dz}{z(x-y)}


Using the multipliers 1,1,1 each of the above ratio is equal to

dx+dy+dzx(yz)+y(zx)+z(xy)=dx+dy+dz0\dfrac{dx+dy+dz}{x(y-z)+y(z-x)+z(x-y)}=\dfrac{dx+dy+dz}{0}


Hence,

dx+dy+dz=0,Integrating we get,x+y+z=c1\begin{aligned} dx+dy+dz&=0,\\ \text{Integrating we get,}\\ x+y+z&=c_{1} \end{aligned}

Using multipliers 1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} the ratio is equal to


1xdx+1ydy+1zdz(yz)+(zx)+(xy)=1xdx+1ydy+1zdz0\dfrac{\frac{1}{x}dx+\frac{1}{y}dy+\frac{1}{z}dz}{(y-z)+(z-x)+(x-y)}=\dfrac{\frac{1}{x}dx+\frac{1}{y}dy+\frac{1}{z}dz}{0}


Hence,

1xdx+1ydy+1zdz=0Integrating we get,lnx+lny+lnz=lnc2ln(xyz)=lnc2xyz=c2\begin{aligned} \frac{1}{x}dx+\frac{1}{y}dy+\frac{1}{z}dz&=0\\ \text{Integrating we get,}\\ \ln x+\ln y+\ln z&=\ln c_{2}\\ \ln (xyz)&=\ln c_{2}\\ xyz&=c_{2} \end{aligned}

Thus, the general solution is

ϕ(c1,c2)=0ϕ(x+y+z,xyz)=0\begin{aligned} \phi(c_{1},c_{2})&=0\\ \phi(x+y+z,xyz)&=0 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS