The given problem must be, yzy−zp+xzz−xq=yxx−y .
This problem can be written as, x(y−z)p+y(z−x)q=z(x−y).
The subsidiary equations are,
x(y−z)dx=y(z−x)dy=z(x−y)dz
Using the multipliers 1,1,1 each of the above ratio is equal to
x(y−z)+y(z−x)+z(x−y)dx+dy+dz=0dx+dy+dz
Hence,
dx+dy+dzIntegrating we get,x+y+z=0,=c1
Using multipliers x1,y1,z1 the ratio is equal to
(y−z)+(z−x)+(x−y)x1dx+y1dy+z1dz=0x1dx+y1dy+z1dz
Hence,
x1dx+y1dy+z1dzIntegrating we get,lnx+lny+lnzln(xyz)xyz=0=lnc2=lnc2=c2
Thus, the general solution is
ϕ(c1,c2)ϕ(x+y+z,xyz)=0=0
Comments