By changing the independent variable.solve the differential equation. d2x/dx2 - (dy/dx)(1/x) + 4x2y = x4
Let t=x2,x=tt=x^2,x=\sqrt{t}t=x2,x=t
y′′−y′/(t)+4yt=t2y''-y'/(\sqrt{t})+4yt=t^2y′′−y′/(t)+4yt=t2
dydx=2tdydt,d2ydx2=4td2ydt2+2dydt\frac{dy}{dx}=2\sqrt{t}\frac{dy}{dt},\frac{d^2y}{dx^2}=4t\frac{d^2y}{dt^2}+2\frac{dy}{dt}dxdy=2tdtdy,dx2d2y=4tdt2d2y+2dtdy
4td2ydt2+4ty(t)=t24t\frac{d^2y}{dt^2}+4ty(t)=t^24tdt2d2y+4ty(t)=t2
d2ydt2+y(t)=t/4\frac{d^2y}{dt^2}+y(t)=t/4dt2d2y+y(t)=t/4
k2+1=0k^2+1=0k2+1=0
k=±ik=\pm ik=±i
The general solution:
y(t)=c1cost+c2sinty(t)=c_1cost+c_2sinty(t)=c1cost+c2sint
For the particular solution:
y~(t)=A+Bt\tilde{y}(t)=A+Bty~(t)=A+Bt
Then:
A+Bt=t/4A+Bt=t/4A+Bt=t/4
A=0,B=1/4A=0,B=1/4A=0,B=1/4
y~(t)=t/4\tilde{y}(t)=t/4y~(t)=t/4
So:
y(t)=t/4+c1cost+c2sinty(t)=t/4+c_1cost+c_2sinty(t)=t/4+c1cost+c2sint
Answer:
y(x)=x2/4+c1cos(x2)+c2sin(x2)y(x)=x^2/4+c_1cos(x^2)+c_2sin(x^2)y(x)=x2/4+c1cos(x2)+c2sin(x2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments