Let t=x2,x=t
y′′−y′/(t)+4yt=t2
dxdy=2tdtdy,dx2d2y=4tdt2d2y+2dtdy
4tdt2d2y+4ty(t)=t2
dt2d2y+y(t)=t/4
k2+1=0
k=±i
The general solution:
y(t)=c1cost+c2sint
For the particular solution:
y~(t)=A+Bt
Then:
A+Bt=t/4
A=0,B=1/4
y~(t)=t/4
So:
y(t)=t/4+c1cost+c2sint
Answer:
y(x)=x2/4+c1cos(x2)+c2sin(x2)
Comments