Question #125824

By changing the independent variable.solve the differential equation. d2x/dx2 - (dy/dx)(1/x) + 4x2y = x4

1
Expert's answer
2020-07-12T18:10:26-0400

Let t=x2,x=tt=x^2,x=\sqrt{t}

yy/(t)+4yt=t2y''-y'/(\sqrt{t})+4yt=t^2

dydx=2tdydt,d2ydx2=4td2ydt2+2dydt\frac{dy}{dx}=2\sqrt{t}\frac{dy}{dt},\frac{d^2y}{dx^2}=4t\frac{d^2y}{dt^2}+2\frac{dy}{dt}


4td2ydt2+4ty(t)=t24t\frac{d^2y}{dt^2}+4ty(t)=t^2

d2ydt2+y(t)=t/4\frac{d^2y}{dt^2}+y(t)=t/4


k2+1=0k^2+1=0

k=±ik=\pm i

The general solution:

y(t)=c1cost+c2sinty(t)=c_1cost+c_2sint

For the particular solution:

y~(t)=A+Bt\tilde{y}(t)=A+Bt

Then:

A+Bt=t/4A+Bt=t/4

A=0,B=1/4A=0,B=1/4

y~(t)=t/4\tilde{y}(t)=t/4


So:

y(t)=t/4+c1cost+c2sinty(t)=t/4+c_1cost+c_2sint


Answer:

y(x)=x2/4+c1cos(x2)+c2sin(x2)y(x)=x^2/4+c_1cos(x^2)+c_2sin(x^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS