Question #126299
Use the method of variation of parameters to find a particular solution of the differential equation

y′′−2y′−15y=384e^−t.
1
Expert's answer
2020-07-21T17:05:49-0400

                                    y2y15y=384et Second order linear non-homogeneous differential equation .                                     y=yh+ypyh   is the solution to the homogeneous .y2y15y=0r22r15=0(r5)(r+3)=0r1=5,r2=3                                    yh=C1e5t+C2e3typ is the particular solution is any function That satisfies the non-homogeneous equation .yp=u1v1+u2v2u1=e5t,u2=e3t,f(t)=384etD=u1u2u1u2=e5te3t5e5t3e3t=8e2tv1=u2f(t)Ddx=e3t384et8e2tdt=48e6tdt=8e6tv2=u1f(t)Ddt=e5t384et8e2tdt=48e2tdt=24e2t                                    yp=u1v1+u2v2     =e5t×8e6t+e3t×24e2t=32ety=C1e5t+C2e3t32et~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~y^{\prime \prime}-2 y^{\prime}-15 y=384 e^{-t}\\[1 em] \text{ Second order linear non-homogeneous differential equation . } \\[1 em] ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~y=y_{h}+y_{p}\\[1 em] y_{h}~~~ \text{is the solution to the homogeneous .}\\[1 em] y^{\prime \prime}-2 y^{\prime}-15 y=0\\[1 em] r^{2}-2 r-15=0 \\[1 em] \begin{array}{l} (r-5)(r+3)=0 \\[1 em] \therefore r_{1}=5 \quad, \quad r_{2}=-3 \end{array}\\[1 em] ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~\therefore y_{h}=C_{1} e^{5 t}+C_{2} e^{-3 t}\\[1 em] y_{p} \text{ is the particular solution is any function} \\[1 em] \text{ That satisfies the non-homogeneous equation .} \\[1 em] y_{p}=u_{1} v_{1}+u_{2} v_{2}\\[1 em] u_{1}=e^{5 t}, u_{2}=e^{-3 t} , f(t)=384 e^{-t}\\[2 em] D=\left|\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{5 t} & e^{-3 t} \\ 5 e^{5 t} & -3 e^{-3 t}\end{array}\right|=-8 e^{2 t}\\[2 em] v_{1}=\int \frac{-u_{2} f(t)}{D} d x=\int \frac{-e^{-3 t} \cdot 384 e^{-t}}{-8 e^{2 t}} d t=48\int e^{-6 t} dt = -8 e^{-6 t}\\[2 em] v_{2}=\int \frac{u_{1} f(t)}{D} d t=\int \frac{e^{5 t} \cdot 384 e^{-t}}{-8 e^{2 t}} d t=-48\int e^{2 t} dt = -24 e^{2 t} \\[2 em] ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~y_{p}=u_{1} v_{1}+u_{2} v_{2}\\[1 em] ~~~~~=e^{5 t}\times -8e^{-6 t}+e^{-3 t}\times -24e^{2 t}= -32e^{- t}\\[2 em] \therefore y=C_{1} e^{5 t}+C_{2} e^{-3 t} -32e^{- t}\\[2 em]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS