Use the method of variation of parameters to find a particular solution of the differential equation
y′′−2y′−15y=384e^−t.
1
Expert's answer
2020-07-21T17:05:49-0400
y′′−2y′−15y=384e−t Second order linear non-homogeneous differential equation . y=yh+ypyhis the solution to the homogeneous .y′′−2y′−15y=0r2−2r−15=0(r−5)(r+3)=0∴r1=5,r2=−3∴yh=C1e5t+C2e−3typ is the particular solution is any function That satisfies the non-homogeneous equation .yp=u1v1+u2v2u1=e5t,u2=e−3t,f(t)=384e−tD=∣∣u1u1′u2u2′∣∣=∣∣e5t5e5te−3t−3e−3t∣∣=−8e2tv1=∫D−u2f(t)dx=∫−8e2t−e−3t⋅384e−tdt=48∫e−6tdt=−8e−6tv2=∫Du1f(t)dt=∫−8e2te5t⋅384e−tdt=−48∫e2tdt=−24e2typ=u1v1+u2v2=e5t×−8e−6t+e−3t×−24e2t=−32e−t∴y=C1e5t+C2e−3t−32e−t
Comments