Question #126297
Find a particular solution of the given differential equation. Use a CAS as an aid in carrying out differentiations, simplifications, and algebra.

y^(4) + 2y'' + y = 1 cos x − 3x sin x
1
Expert's answer
2020-07-15T19:01:52-0400


Given D.E is

y(4)+2y+y=cos(x)3xsin(x)y^{(4)} + 2y'' + y = \cos(x) − 3x\sin(x)

Thus, auxilary equation will be

m4+2m2+1=0    (m2+1)2=0    m=±i,±im^4+2m^2+1=0\\ \implies (m^2+1)^2=0\\ \implies m=\pm i,\pm i

Hence,

C.F=(c1+c2x)cos(x)+(c3+c4x)sin(x)C.F=(c_1+c_2x)\cos(x)+(c_3+c_4x)\sin(x)

Now, from C.FC.F we can guess the particular solution is

yp(x)=(ax+bx2)cos(x)+(cx+dx2)sin(x)y_p(x)=(ax+bx^2)\cos(x)+(cx+dx^2)\sin(x)

Now, we have to find the value a,b,c,da,b,c,d .

Thus, find the the expression

yp(4)+2yp+ypy_p^{(4)} + 2y_p'' + y_p

And compare the coefficients of the above expression with cos(x)3xsin(x)\cos(x) − 3x\sin(x) we get

yp(4)+2yp+yp=cos(x)(24ax8b+24c)+sin(x)(24a24cx8d)    24a=08b+24c=124c=324a8d=0y_p^{(4)} + 2y_p'' + y_p=\cos(x)(-24ax-8b+24c)+\sin(x)(-24a-24cx-8d)\\\implies -24a=0\\ -8b+24c=1\\ -24c=3\\ -24a-8d=0

Thus,

a=d=0,b=14,c=18a=d=0,b=\frac{1}{4},c=\frac{1}{8}\\


    yp(x)=x24cos(x)+x38sin(x)\implies y_p(x)=\frac{x^2}{4}\cos(x)+\frac{x^3}{8}\sin(x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS