Given D.E is
y(4)+2y′′+y=cos(x)−3xsin(x) Thus, auxilary equation will be
m4+2m2+1=0⟹(m2+1)2=0⟹m=±i,±iHence,
C.F=(c1+c2x)cos(x)+(c3+c4x)sin(x)Now, from C.F we can guess the particular solution is
yp(x)=(ax+bx2)cos(x)+(cx+dx2)sin(x)Now, we have to find the value a,b,c,d .
Thus, find the the expression
yp(4)+2yp′′+yp And compare the coefficients of the above expression with cos(x)−3xsin(x) we get
yp(4)+2yp′′+yp=cos(x)(−24ax−8b+24c)+sin(x)(−24a−24cx−8d)⟹−24a=0−8b+24c=1−24c=3−24a−8d=0
Thus,
a=d=0,b=41,c=81
⟹yp(x)=4x2cos(x)+8x3sin(x)
Comments