Question #126307
Solve the given differential equation using an appropriate substitution. The DE is a bernoulli equation.

t^2 dy/dt + y^2 = ty
1
Expert's answer
2020-07-20T18:13:54-0400

t2dydt+y2=tyt^2\frac{dy}{dt}+y^2=ty

t2dydtty=y2t^2\frac{dy}{dt}-ty=-y^2

Dividing equation by t2y2-t^2y^2 :

y2y+y1t1=t2-y^{-2}y'+y^{-1}t^{-1}=t^{-2}

Substituting z=y12=y1z=y^{1-2}=y^{-1} , dzdt=z=y2y\frac{dz}{dt}=z'=-y^{-2}y' , therefore: (1)

z+zt=1t2z'+\frac z t =\frac 1 {t^2}

Substituting z=uvz=uv , z=uv+uvz'=u'v+uv' : (2)

uv+uv+uvt=1t2u'v+uv'+\frac {uv} t = \frac 1 {t^2}

uv+u(v+vt)=1t2u'v+u(v'+\frac {v} t) = \frac 1 {t^2} (3)

Setting the part inside () to 0 and separating variables:

v+vt=0v'+\frac {v} t=0

dvdt=vt\frac {dv}{dt}=-\frac v t

dvv=dtt\int \frac {dv} v = - \int \frac {dt} t

ln(v)=ln(t)+ln(k)ln(v) = -ln(t)+ln(k)

v=ktv=\frac k t (4)

Putting vv from (4) into equation (3):

ukt=1t2u'\frac k t = \frac 1 {t^2}

kdu=dtt\int kdu = \int \frac {dt}t

u=1k(ln(t)+C)u= \frac 1 k (ln(t)+C)

Finding z from (2):

z=uv=1k(ln(t)+C)kt=ln(t)+Ctz=uv=\frac 1k (ln(t)+C)\frac kt = \frac{ln(t)+C}{t}

Finding y from (1):

y=z1=tln(t)+Cy=z^{-1}=\frac t {ln(t)+C}

Answer: y=tln(t)+Cy=\frac t {ln(t)+C}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS