t2dtdy+y2=ty
t2dtdy−ty=−y2
Dividing equation by −t2y2 :
−y−2y′+y−1t−1=t−2
Substituting z=y1−2=y−1 , dtdz=z′=−y−2y′ , therefore: (1)
z′+tz=t21
Substituting z=uv , z′=u′v+uv′ : (2)
u′v+uv′+tuv=t21
u′v+u(v′+tv)=t21 (3)
Setting the part inside () to 0 and separating variables:
v′+tv=0
dtdv=−tv
∫vdv=−∫tdt
ln(v)=−ln(t)+ln(k)
v=tk (4)
Putting v from (4) into equation (3):
u′tk=t21
∫kdu=∫tdt
u=k1(ln(t)+C)
Finding z from (2):
z=uv=k1(ln(t)+C)tk=tln(t)+C
Finding y from (1):
y=z−1=ln(t)+Ct
Answer: y=ln(t)+Ct
Comments