2z=(ax+y)^2+b
where a, b are arbitrary constants, is a complete integral of
px+qy−q2=12δ((ax+y)2+b)δxx+12δ((ax+y)2+b)δyy−(12δ((ax+y)2+b)δy)2px+qy-q^2=\frac{1}{2}\frac{\delta((ax+y)^2+b)}{\delta x}x+\frac{1}{2}\frac{\delta((ax+y)^2+b)}{\delta y}y-(\frac{1}{2}\frac{\delta((ax+y)^2+b)}{\delta y})^2px+qy−q2=21δxδ((ax+y)2+b)x+21δyδ((ax+y)2+b)y−(21δyδ((ax+y)2+b))2
⟹ a(ax+y)x+(ax+y)y−(ax+y)2=a2x2+axy+axy+y2−(a2x2+2axy+y2)=a2x2−a2x2+2axy−2axy+y2−y2=0+0+0=0\implies a(ax+y)x+(ax+y)y-(ax+y)^2=a^2x^2+axy+axy+y^2-(a^2x^2+2axy+y^2)=a^2x^2-a^2x^2+2axy-2axy+y^2-y^2=0+0+0=0⟹a(ax+y)x+(ax+y)y−(ax+y)2=a2x2+axy+axy+y2−(a2x2+2axy+y2)=a2x2−a2x2+2axy−2axy+y2−y2=0+0+0=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments