Question #126449

2z=(ax+y)^2+b


1
Expert's answer
2020-07-16T19:30:27-0400
SolutionSolution

where a, b are arbitrary constants, is a complete integral of


px+qyq2=0px+qy-q^2=0

px+qyq2=12δ((ax+y)2+b)δxx+12δ((ax+y)2+b)δyy(12δ((ax+y)2+b)δy)2px+qy-q^2=\frac{1}{2}\frac{\delta((ax+y)^2+b)}{\delta x}x+\frac{1}{2}\frac{\delta((ax+y)^2+b)}{\delta y}y-(\frac{1}{2}\frac{\delta((ax+y)^2+b)}{\delta y})^2


    a(ax+y)x+(ax+y)y(ax+y)2=a2x2+axy+axy+y2(a2x2+2axy+y2)=a2x2a2x2+2axy2axy+y2y2=0+0+0=0\implies a(ax+y)x+(ax+y)y-(ax+y)^2=a^2x^2+axy+axy+y^2-(a^2x^2+2axy+y^2)=a^2x^2-a^2x^2+2axy-2axy+y^2-y^2=0+0+0=0










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS