2z=(ax+y)^2+b
where a, b are arbitrary constants, is a complete integral of
"px+qy-q^2=\\frac{1}{2}\\frac{\\delta((ax+y)^2+b)}{\\delta x}x+\\frac{1}{2}\\frac{\\delta((ax+y)^2+b)}{\\delta y}y-(\\frac{1}{2}\\frac{\\delta((ax+y)^2+b)}{\\delta y})^2"
"\\implies a(ax+y)x+(ax+y)y-(ax+y)^2=a^2x^2+axy+axy+y^2-(a^2x^2+2axy+y^2)=a^2x^2-a^2x^2+2axy-2axy+y^2-y^2=0+0+0=0"
Comments
Leave a comment