Question #126813
Find the general solution of the given differential equation

dr / d theta + rsec theta = cos theta
1
Expert's answer
2020-07-20T18:29:08-0400

Question: drdθ+rsec(θ)=cos(θ)\frac {dr}{d\theta}+rsec(\theta)=cos(\theta)

Solution:

Substituting r=uvr=uv , r=uv+uvr'=u'v+uv' : (1)

uv+uv+sec(θ)uv=cos(θ)u'v+uv'+sec(\theta)uv=cos(\theta)

uv+u(v+sec(θ)v)=cos(θ)u'v+u(v'+sec(\theta)v)=cos(\theta) (2)

Setting the part inside () to 0 and separating variables:

v+sec(θ)v=0v'+sec(\theta)v=0

dvdθ=sec(θ)v\frac {dv}{d\theta}=-sec(\theta)v

dvdθ=sec(θ)\int \frac {dv}{d\theta}=-\int sec(\theta)

ln(v)=ln(sec(θ)+tan(θ))+ln(k)ln(v)=-ln(sec(\theta)+tan(\theta)) + ln(k)

ln(v)=ln(ksec(θ)+tan(θ))ln(v)=ln(\frac k {sec(\theta)+tan(\theta)})

v=ksec(θ)+tan(θ)v=\frac k {sec(\theta)+tan(\theta)}

Putting vv  from (3) into equation (2):

uksec(θ)+tan(θ)=cos(θ)u'\frac k {sec(\theta)+tan(\theta)}=cos(\theta)

Using trigonometric identities sec(θ)=1cos(θ)sec(\theta)=\frac 1 {cos(\theta)} , tan(θ)=sin(θ)cos(θ)tan(\theta)=\frac {sin(\theta)}{cos(\theta)} :

du=1kcos(θ)(sec(θ)+tan(θ))dθ=1k(1+sin(θ))dθdu=\frac 1k cos(\theta)(sec(\theta)+tan(\theta))d\theta=\frac 1k (1+sin(\theta))d\theta

u=1k(1+sin(θ))dθ=1k(θcos(θ)+C)u=\frac 1k \int (1+sin(\theta))d\theta = \frac 1k (\theta-cos(\theta)+C)

Finding r from (1):

r=uv=θcos(θ)+Csec(θ)+tan(θ)r=uv=\frac {\theta-cos(\theta)+C}{sec(\theta)+tan(\theta)}

Answer: r=θcos(θ)+Csec(θ)+tan(θ)r=\frac {\theta-cos(\theta)+C}{sec(\theta)+tan(\theta)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS