Question: dθdr+rsec(θ)=cos(θ)
Solution:
Substituting r=uv , r′=u′v+uv′ : (1)
u′v+uv′+sec(θ)uv=cos(θ)
u′v+u(v′+sec(θ)v)=cos(θ) (2)
Setting the part inside () to 0 and separating variables:
v′+sec(θ)v=0
dθdv=−sec(θ)v
∫dθdv=−∫sec(θ)
ln(v)=−ln(sec(θ)+tan(θ))+ln(k)
ln(v)=ln(sec(θ)+tan(θ)k)
v=sec(θ)+tan(θ)k
Putting v from (3) into equation (2):
u′sec(θ)+tan(θ)k=cos(θ)
Using trigonometric identities sec(θ)=cos(θ)1 , tan(θ)=cos(θ)sin(θ) :
du=k1cos(θ)(sec(θ)+tan(θ))dθ=k1(1+sin(θ))dθ
u=k1∫(1+sin(θ))dθ=k1(θ−cos(θ)+C)
Finding r from (1):
r=uv=sec(θ)+tan(θ)θ−cos(θ)+C
Answer: r=sec(θ)+tan(θ)θ−cos(θ)+C
Comments