L(sin(5t+6))=∫0∞e−stsin(5t+6)dt
Let, I=∫e−stsin(5t+6)dt
=[s−1e−stsin(5t+6)]−∫s−5e−stcos(5t+6)dt
=[s−1e−stsin(5t+6)]−[s2−5e−stcos(5t+6)+∫s225e−stsin(5t+6)dt]
I=[s−1e−stsin(5t+6)]−[s2−5e−stcos(5t+6)]−s225I
then solving it,
we get,
I=s2+25e−st[−ssin(5t+6)−5cos(5t+6)]
Now, putting the limits,
L(sin(5t+6))=∫0∞e−stsin(5t+6)dt=s2+251[ssin(6)+5cos(6)]
Comments