Question #126855
Find ℒ{f(t)}

by first using a trigonometric identity. (Write your answer as a function of s.)
f(t) = sin(5t + 6)
1
Expert's answer
2020-07-20T18:10:18-0400

L(sin(5t+6))=0estsin(5t+6)dt\mathcal{L} (sin(5t+6) ) = \int_0^{\infty} e^{-st} sin(5t+6) dt


Let, I=estsin(5t+6)dtI = \int e^{-st} sin(5t+6) dt


=[1sestsin(5t+6)]5sestcos(5t+6)dt= [ \frac{-1}{s} e^{-st} sin(5t+6)] - \int\frac{-5}{s} e^{-st} cos(5t+6)dt


=[1sestsin(5t+6)][5s2estcos(5t+6)+25s2estsin(5t+6)dt]= [ \frac{-1}{s} e^{-st} sin(5t+6)] - [\frac{-5}{s^2} e^{-st} cos(5t+6) + \int \frac{25}{s^2} e^{-st} sin(5t+6)dt]

I=[1sestsin(5t+6)][5s2estcos(5t+6)]25s2II = [ \frac{-1}{s} e^{-st} sin(5t+6)] - [\frac{-5}{s^2} e^{-st} cos(5t+6)] - \frac{25}{s^2}I

then solving it,

we get,


I=ests2+25[ssin(5t+6)5cos(5t+6)]I = \frac{e^{-st}}{s^2 + 25}[ -ssin(5t+6) - 5cos(5t+6) ]


Now, putting the limits,

L(sin(5t+6))=0estsin(5t+6)dt=1s2+25[ssin(6)+5cos(6)]\mathcal{L} (sin(5t+6) ) = \int_0^{\infty} e^{-st} sin(5t+6) dt = \frac{1}{s^2 + 25} [ ssin(6) + 5cos(6)]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS