Question #127049
Find an explicit solution of the given initial- value problem

square root of 1-y^2 dx - square root 1-x^2 dy = 0, y(0)= 1/2

y = _________________
1
Expert's answer
2020-07-21T18:44:59-0400

As,

1y2dx1x2dy=0\sqrt{1-y^2}dx-\sqrt{1-x^2}dy=0

Divide both side of the above equation by (1y2)(1x2)\sqrt{(1-y^2)(1-x^2)} ,thus


dx1x2dy1y2=0    dx1x2dy1y2=c    sin1(x)sin1(y)=c\dfrac{dx}{\sqrt{1-x^2}}-\dfrac{dy}{\sqrt{1-y^2}}=0\\ \implies \int\dfrac{dx}{\sqrt{1-x^2}}-\int\dfrac{dy}{\sqrt{1-y^2}}=c\\ \implies\sin^{-1}(x)-\sin^{-1}(y)=c

Now, y(0)=1/2y(0)=1/2 ,thus

sin1(0)sin1(1/2)=c\sin^{-1}(0)-\sin^{-1}(1/2)=c

Thus, particular solution is

sin1(x)sin1(y)=π6\sin^{-1}(x)-\sin^{-1}(y)=-\frac{\pi}{6}

Thus,

y=sin(sin1(x)+π6)y=\sin(\sin^{-1}(x)+\frac{\pi}{6})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS