"u = x^2 \u2212 y^2 = c_1...(1) \\newline\n\nv = y^2 \u2212 z^2 = c2 ...(2)"
differentiating both (1) and (2)
"du=2xdx-2ydy=0\\newline\n\\implies xdx=ydy ...(3)\\newline\ndv=2ydy-2zdz=0\\newline\n\\implies ydy=zdz...(4)\n\\newline\nby\\hspace{0.1cm} (3) \\hspace{0.1cm}and \\hspace{0.1cm} (4)\\newline\\implies xdx=ydy=zdz \n\\newline\n\\implies \\frac{xdx}{xyz}=\\frac{ydy}{xyz}=\\frac{zdz}{xyz}\\newline\n\\implies \\frac{dx}{yz}= \\frac{dy}{xz}= \\frac{dz}{xy}"
Answer:"\\frac{dx}{yz}= \\frac{dy}{xz}= \\frac{dz}{xy}"
Comments
Leave a comment