u=x2−y2=c1...(1)v=y2−z2=c2...(2)u = x^2 − y^2 = c_1...(1) \newline v = y^2 − z^2 = c2 ...(2)u=x2−y2=c1...(1)v=y2−z2=c2...(2)
differentiating both (1) and (2)
du=2xdx−2ydy=0 ⟹ xdx=ydy...(3)dv=2ydy−2zdz=0 ⟹ ydy=zdz...(4)by(3)and(4) ⟹ xdx=ydy=zdz ⟹ xdxxyz=ydyxyz=zdzxyz ⟹ dxyz=dyxz=dzxydu=2xdx-2ydy=0\newline \implies xdx=ydy ...(3)\newline dv=2ydy-2zdz=0\newline \implies ydy=zdz...(4) \newline by\hspace{0.1cm} (3) \hspace{0.1cm}and \hspace{0.1cm} (4)\newline\implies xdx=ydy=zdz \newline \implies \frac{xdx}{xyz}=\frac{ydy}{xyz}=\frac{zdz}{xyz}\newline \implies \frac{dx}{yz}= \frac{dy}{xz}= \frac{dz}{xy}du=2xdx−2ydy=0⟹xdx=ydy...(3)dv=2ydy−2zdz=0⟹ydy=zdz...(4)by(3)and(4)⟹xdx=ydy=zdz⟹xyzxdx=xyzydy=xyzzdz⟹yzdx=xzdy=xydz
Answer:dxyz=dyxz=dzxy\frac{dx}{yz}= \frac{dy}{xz}= \frac{dz}{xy}yzdx=xzdy=xydz
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments