Question #105509
Find the differential equation of the space curve in which the two families of
surfaces
u = x^2 − y^2 = c1 and
v = y^2 − z^2 = c2 intersect.
1
Expert's answer
2020-03-27T12:53:09-0400

u=x2y2=c1...(1)v=y2z2=c2...(2)u = x^2 − y^2 = c_1...(1) \newline v = y^2 − z^2 = c2 ...(2)

differentiating both (1) and (2)

du=2xdx2ydy=0    xdx=ydy...(3)dv=2ydy2zdz=0    ydy=zdz...(4)by(3)and(4)    xdx=ydy=zdz    xdxxyz=ydyxyz=zdzxyz    dxyz=dyxz=dzxydu=2xdx-2ydy=0\newline \implies xdx=ydy ...(3)\newline dv=2ydy-2zdz=0\newline \implies ydy=zdz...(4) \newline by\hspace{0.1cm} (3) \hspace{0.1cm}and \hspace{0.1cm} (4)\newline\implies xdx=ydy=zdz \newline \implies \frac{xdx}{xyz}=\frac{ydy}{xyz}=\frac{zdz}{xyz}\newline \implies \frac{dx}{yz}= \frac{dy}{xz}= \frac{dz}{xy}

Answer:dxyz=dyxz=dzxy\frac{dx}{yz}= \frac{dy}{xz}= \frac{dz}{xy}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS