Question #105505
Solve, using the method of variation of parameters
d^2y/dx^2-y=2/1+e^x
1
Expert's answer
2020-03-27T13:58:33-0400

Solution for the homogenous equation

yy=0y''-y=0

D21=0;D=±1D^2-1=0; D=\pm1

yh=c1ex+c2exy_h=c_1e^x+c_2e^{-x}

Using method of variations of parameters c1=c1(x);c2=c2(x)c_1=c_1(x);c_2=c_2(x) will give us the system

c1(x)ex+c2(x)ex=0c1(x)exc2(x)ex=21+ex    c1(x)ex=11+exc2(x)ex=11+ex\begin{matrix} c_1'(x)e^x+c_2'(x)e^{-x}=0 \\ c_1'(x)e^x-c_2'(x)e^{-x}=\frac{2}{1+e^x} \end{matrix}\implies \begin{matrix} c_1'(x)e^x=\frac{1}{1+e^x} \\ c_2'(x)e^{-x}=-\frac{1}{1+e^x} \end{matrix}

c1(x)=ex1+exdx=log(ex+1)ex+c1c_1(x)=\int\frac{e^{-x}}{1+e^x}dx=\log(e^{-x}+1)-e^{-x}+c_1

c2(x)=ex1+exdx=log(ex+1)+c2c_2(x)=-\int\frac{e^{x}}{1+e^x}dx=-\log(e^{x}+1)+c_2

Therefore

y=c1ex+c2ex+(log(ex+1)ex)exlog(ex+1)exy=c_1e^x+c_2e^{-x}+(\log(e^{-x}+1)-e^{-x})e^x-\log(e^{x}+1)e^{-x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS