y′+xy=y2ex2/2sinx
divide both sides by y2
y′/y2+x/y=ex2/2sinx
substitution: t=1/y
xt−t′=ex2/2sinx
let's solve first this equation: xt−t′=0
∫dt/t=∫xdx
lnt−lnC=x2/2
t=Cex2/2
then solution to initial equation will have form: t(x)=C(x)ex2/2
t′(x)=C′(x)ex2/2+xC(x)ex2/2
Let's put these to initial equation
xC(x)ex2/2−C′(x)ex2/2−xC(x)ex2/2=ex2/2sinx
C′(x)=−sinx
C(x)=∫−sinxdx=C1+cosx
then t(x)=(C1+cosx)ex2/2
y=1/t=e−x2/2/(C1+cosx)
Comments