Question #105502
a) Solve the differential equation
dy/dx+xy=y^2e^(x^2/2)sinx
1
Expert's answer
2020-03-24T13:44:00-0400

y+xy=y2ex2/2sinxy'+xy=y^2e^{x^2/2}\sin{x}

divide both sides by y2y^2

y/y2+x/y=ex2/2sinxy'/y^2+x/y=e^{x^2/2}\sin{x}

substitution: t=1/yt=1/y

xtt=ex2/2sinxxt-t'=e^{x^2/2}\sin{x}

let's solve first this equation: xtt=0xt-t'=0

dt/t=xdx\int dt/t=\int xdx

lntlnC=x2/2\ln{t}-\ln{C}=x^2/2

t=Cex2/2t=Ce^{x^2/2}

then solution to initial equation will have form: t(x)=C(x)ex2/2t(x)=C(x)e^{x^2/2}

t(x)=C(x)ex2/2+xC(x)ex2/2t'(x)=C'(x)e^{x^2/2}+xC(x)e^{x^2/2}

Let's put these to initial equation

xC(x)ex2/2C(x)ex2/2xC(x)ex2/2=ex2/2sinxxC(x)e^{x^2/2}-C'(x)e^{x^2/2}-xC(x)e^{x^2/2}=e^{x^2/2}\sin{x}

C(x)=sinxC'(x)=-\sin{x}

C(x)=sinxdx=C1+cosxC(x)=\int -\sin{x}dx=C_1+\cos{x}

then t(x)=(C1+cosx)ex2/2t(x)=(C_1+\cos{x})e^{x^2/2}

y=1/t=ex2/2/(C1+cosx)y=1/t=e^{-x^2/2}/(C_1+\cos{x})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS