Question #105488
Given that z = ax + √a² − 4y + c 2 is the complete integral of the PDE, p² − q² =4 determine its general integral.
1
Expert's answer
2020-03-19T05:28:55-0400

Given that z=ax+a24y+cz=ax+\sqrt{a^2-4y}+c is the complete integral of the PDE, p2q2=4p^2-q^2=4

To find the general solution we put c=f(a),c=f(a), where ff is an arbitrary function


                   z=ax+a24y+f(a)             (1)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ z=ax+\sqrt{a^2-4y}+f(a) \ \ \ \ \ \ \ \ \ \ \ \ \ (1)

Differentiate (1)(1) partially with respect to aa


x+2a2a24y+f(a)=0x+{2a \over 2\sqrt{a^2-4y}}+f'(a)=0

aa24y=(x+f(a)){a \over \sqrt{a^2-4y}}=-(x+f'(a))

a2=a2(x+f(a))24y(x+f(a))2a^2=a^2(x+f'(a))^2-4y(x+f'(a))^2

a=±2(x+f(a))2y(x+f(a))21a=\pm2\sqrt{{(x+f'(a))^2y \over (x+f'(a))^2-1}}

z=axax+f(a)+f(a)z=ax-{a \over x+f'(a)}+f(a)

The general solution is


z=±2(x+f(a))2y(x+f(a))21xsgn(x+f(a))2y(x+f(a))21+f(a)z=\pm2\sqrt{{(x+f'(a))^2y \over (x+f'(a))^2-1}}x\mp\text{sgn}(x+f'(a))2\sqrt{{y \over (x+f'(a))^2-1}}+f(a)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
25.04.20, 00:27

The (x+f'(a)) was cancelled, but using ther property sqrt(t^2)=|t|=t*sign(t) for t=x+f'(a), the sign(t) cannot be cancelled because |t| and t can differ if t

Erina
24.04.20, 21:05

I am really confused with the last line/final answer, shouldn't the (x+f'(a)) after sgn get cancelled? +- 2 sq rt

LATEST TUTORIALS
APPROVED BY CLIENTS