dx/((x-y)y2)=dy/((y-x)x2)=dz/((x2+y2)z)
dx/((x-y)y2)=dy/((y-x)x2)
"\\int" y2dy = "\\int" -x2dx
y3 = -x3+c1
dx/((x-y)y2)=dz/((x2+y2)z)
"\\int" y2/z dz = "\\int" (x2+y2)/(x-y) dx
"\\intop" (x2+y2)/(x-y) dx = "\\int" ((2y2/(x-y)+x+y)dx = 2y2"\\intop" 1/(x-y)dx +"\\intop" x dx + y "\\intop" 1 dx =
= 2 y2 ln(x-y) + x2/2 + xy + c2
y2ln(z) = 2 y2 ln(x-y) + x2/2 + xy + c2
integral surface:
y3 = -x3+c1
y2ln(z) = 2 y2 ln(x-y) + x2/2 + xy + c2
Comments
Leave a comment