dx/((x-y)y2)=dy/((y-x)x2)=dz/((x2+y2)z)
dx/((x-y)y2)=dy/((y-x)x2)
y2dy = -x2dx
y3 = -x3+c1
dx/((x-y)y2)=dz/((x2+y2)z)
y2/z dz = (x2+y2)/(x-y) dx
(x2+y2)/(x-y) dx = ((2y2/(x-y)+x+y)dx = 2y2 1/(x-y)dx + x dx + y 1 dx =
= 2 y2 ln(x-y) + x2/2 + xy + c2
y2ln(z) = 2 y2 ln(x-y) + x2/2 + xy + c2
integral surface:
y3 = -x3+c1
y2ln(z) = 2 y2 ln(x-y) + x2/2 + xy + c2
Comments