"\\frac{d^2y}{dx^2}+2\\frac{dy}{dx}+5y=xe^{-x} \\cos2x"
Solution of equation can be found in the form
"y=y_1+y_2"
Solution "y_1" can be found from equation
"y''+2y'+5y=0"
"k^2+2k+5=0\\\\\nD=4-20=-16=16i^2\\\\\nk_1=\\frac{-2-4i}{2}=-1-2i\\\\\nk_2=\\frac{-2+4i}{2}=-1+2i\\\\\ny_1=e^{-x}(C_1\\cos2x+C_2\\sin2x)"
Solution "y_2" can be found in form
"y_2=xe^{-x}((ax+b)\\cos2x+(cx+m)\\sin2x)=\\\\\n=e^{-x}((ax^2+bx)\\cos2x+(cx^2+mx)\\sin2x))\\\\\ny_2' =e^{-x}\\cos2x(x^2(-a+2c)+\\\\+x(2a-b+2m)+b)+\\\\\n+e^{-x}\\sin2x(x^2(-2a-c)+\\\\+x(-2b+2c-m)+m)\\\\\ny_2'' =e^{-x}\\cos2x(x^2(-3a-4c)+\\\\+x(-4a-3b-4m+8c)-2b+2a+4m)+\\\\\n+e^{-x}\\sin2x(x^2(4a-3c)+\\\\+x(-8a+4b-3m-4c)-4b-2m+2c)\\\\"
Plug "y_2, y_2', y_2''" into the equation, then
"e^{-x}\\cos2x(x^2(-3a-4c)+\\\\+x(-4a-3b-4m+8c)-2b+2a+4m)+\\\\\n+e^{-x}\\sin2x(x^2(4a-3c)+\\\\+x(-8a+4b-3m-4c)-4b-2m+2c)+\\\\\n+2e^{-x}\\cos2x(x^2(-a+2c)+\\\\+x(2a-b+2m)+b)+\\\\\n+2e^{-x}\\sin2x(x^2(-2a-c)+\\\\+x(-2b+2c-m)+m)+\\\\\n+5e^{-x}((ax^2+bx)\\cos2x+(cx^2+mx)\\sin2x))=\\\\\n=xe^{-x}\\cos2x\\\\\n\\cos2x:\\\\ x^2:-3a-4c-2a+4c+5a=0\\\\\\implies0=0\\\\\nx:-4a-3b-4m+8c+4a-2b+4m+5b=1\\\\\n\\implies8c=1, c=\\frac{1}{8}\\\\\nx^0:-2b+2a+4m+2b=0\\\\\n\\implies2a+4m=0\\\\\n\\sin2x:\\\\\nx^2:4a-3c-4a-2c+5c=0\\\\\n\\implies0=0\\\\\nx:-8a+4b-3m-4c-4b+\\\\+4c-2m+5m=0\\\\\n\\implies a=0\\\\\nx^0:-4b-2m+2c+2m=0\\\\\n\\implies-4b+2c=0\\\\\nb=\\frac{1}{16}\\\\\nm=0"
Then
"y_2=e^{-x}(\\frac{1}{16}x\\cos2x+\\frac{1}{8}x^2\\sin2x)"
The solution of the equation is
"y=e^{-x}(C_1\\cos2x+C_2\\sin2x)+\\\\\n+e^{-x}(\\frac{1}{16}x\\cos2x+\\frac{1}{8}x^2\\sin2x)"
Comments
Dear Prashant Naik, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much for the great help.God bless you.
Dear Prashant Naik, thank you for correcting us.
I see x is missing on the RHS of the equation.As the process of getting values of constants is very tedious request for your kind help to solve the given correct equation
The r.h.s is xe^-xcos2x.In your solution x is missing.
Leave a comment