(xy2−x2)dx+(3x2y2+x2y−2x3+y2)dy=0P(x,y)=xy2−x2Q(x,y)=3x2y2+x2y−2x3+y2∂y∂P=2xy∂x∂Q=6xy2+2xy−6x2∂y∂P=∂x∂QΨ(y)=−P∂y∂P−∂x∂Q==−(xy2−x2)2xy−(6xy2+2xy−6x2)=x2−xy2−6xy2+6x2=xy2−x26(xy2−x2)=6μ(y)=e∫Ψ(y)dy=e∫6dy=e6y
we multiply the equation by e6y
(xy2−x2)e6ydx++(3x2y2+x2y−2x3+y2)e6ydy=0P1(x,y)=(xy2−x2)e6yQ1(x,y)=(3x2y2+x2y−2x3+y2)e6y∂y∂P1=6e6y(xy2−x2)+e6y(2xy)==e6y(6xy2+2xy−6x2)∂x∂Q1=e6y(6xy2+2xy−6x2)∂y∂P1=∂x∂Q1
Then there is a function u(x,y) such that
∂x∂u=(xy2−x2)e6y∂y∂u=(3x2y2+x2y−2x3+y2)e6yu(x,y)=∫(xy2−x2)e6ydx==(2x2y2−3x3)e6y+ϕ(y)∂y∂u(x,y)=6e6y(2x2y2−3x3)+yx2e6y+ϕ′(y)==e6y(3x2y2−2x3+yx2)+ϕ′(y)e6y(3x2y2−2x3+yx2)+ϕ′(y)==e6y(3x2y2+x2y−2x3+y2)ϕ′(y)=y2e6yϕ(y)=y26e6y−y18e6y+108e6y
solutions of the equation
(2x2y2−3x3)e6y+y26e6y−y18e6y+108e6y=C
Comments