Question #105381
Solve the following equation :
(1) (D^2 - 2DD' + [D']^2 )z = tan(x - y)
(2) z(p - q) = z^2 + (x + y^2)
1
Expert's answer
2020-03-20T17:29:57-0400

Question (i)

(D22DD+[D]2)z=tan(xy)z=C.F.+P.I.\left(D^2-2DD'+[D']^2\right)z=\tan(x-y)\longrightarrow\\[0.3cm] z=C.F.+P.I.



1 STEP: We try to find C.F.



(D22DD+[D]2)z=0\left(D^2-2DD'+[D']^2\right)z=0



The auxillary equation is


m22m+1=0m1,2=1m^2-2m+1=0\longrightarrow\\[0.3cm] m_{1,2}=1



Then,


C.F.=f1(y+1x)+xf2(y+1x)C.F.=f1(y+x)+xf2(y+x)C.F.=f_1(y+1\cdot x)+x\cdot f_2(y+1\cdot x)\\[0.3cm] \boxed{C.F.=f_1(y+x)+x\cdot f_2(y+x)}



2 STEP: We try to find P.I.

Let us give some theory to understand how to solve this equation:

If F(x,y)F(x,y)  is any function, resolve F(D,D)F(D,D') into linear factors say



(Dm1D),(Dm2D),,(DmnD)(D-m_1D'),(D-m_2D'),\ldots,(D-m_nD')



then,



P.I.=1(Dm1D)(DmnD)F(x,y)P.I.=\displaystyle\frac{1}{(D-m_1D')\cdot\ldots(D-m_nD')}F(x,y)



Note:



(1)1(DmD)F(x,y)=F(x,cmx)dx,wherey=cmx(1)1(D+mD)F(x,y)=F(x,c+mx)dx,wherey=c+mx(1)\,\,\frac{1}{(D-mD')}F(x,y)=\int F(x,c-mx)dx,\,\,\text{where}\,\,y=c-mx\\[0.3cm] (1)\,\,\frac{1}{(D+mD')}F(x,y)=\int F(x,c+mx)dx,\,\,\text{where}\,\,y=c+mx\\[0.3cm]



In our case,



P.I.=1(D1D)(D1D)tan(xy)==1(D1D)tan(x(c1x))dx=[1x+y=c]==1(D1D)tan(2xc)dx==1(D1D)(12lncos(2xc))==(12lncos(2xc))dxP.I.=\frac{1}{(D-1\cdot D')(D-1\cdot D')}\tan(x-y)=\\[0.3cm] =\frac{1}{(D-1\cdot D')}\int\tan(x-(c-1x))dx=[1x+y=c]=\\[0.3cm] =\frac{1}{(D-1\cdot D')}\int\tan(2x-c)dx=\\[0.3cm] =\frac{1}{(D-1\cdot D')}\left(\frac{-1}{2}\cdot\ln|\cos(2x-c)|\right)=\\[0.3cm] =\int\left(\frac{-1}{2}\cdot\ln|\cos(2x-c)|\right)dx



(More information about tan(x)dx\int\tan(x)dx: https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions)

Conclusion,



P.I.=12lncos(2xc)dx\boxed{P.I.=-\frac{1}{2}\cdot\int\ln|\cos(2x-c)|dx}



General conclusion,



z=C.F.+P.I.z=f1(y+x)+xf2(y+x)12lncos(2xc)dxz=C.F.+P.I.\longrightarrow\\[0.3cm] \boxed{z=f_1(y+x)+x\cdot f_2(y+x)-\frac{1}{2}\cdot\int\ln|\cos(2x-c)|dx}



Question (ii)



z(pq)=z2+(x+y)2zp+(z)q=(z2+(x+y)2)z(p-q)=z^2+(x+y)^2\longrightarrow\\[0.3cm] zp+(-z)q=(z^2+(x+y)^2)



The auxillary equation is



dxz=dyz=dzz2+(x+y)2\frac{dx}{z}=\frac{dy}{-z}=\frac{dz}{z^2+(x+y)^2}\\[0.3cm]

Then,



dxz=dyzdx1=dy1dx+dy=0d(x+y)=0x+y=C1dxz=dzz2+(x+y)2dx=zdzz2+C12x=12d(z2)z2+C12x=12lnz2+C1212lnC22x=lnz2+C12C2e2x=z2+C12C2C2=z2+C12e2x\frac{dx}{z}=\frac{dy}{-z}\longrightarrow\frac{dx}{1}=\frac{dy}{-1}\longrightarrow\\[0.3cm] dx+dy=0\longrightarrow d(x+y)=0\longrightarrow\\[0.3cm] \boxed{x+y=C_1}\\[0.3cm] \frac{dx}{z}=\frac{dz}{z^2+(x+y)^2}\longrightarrow dx=\frac{zdz}{z^2+C_1^2}\longrightarrow\\[0.3cm] x=\frac{1}{2}\cdot\int\frac{d(z^2)}{z^2+C_1^2}\longrightarrow x=\frac{1}{2}\cdot\ln|z^2+C_1^2|-\frac{1}{2}\ln|C_2|\longrightarrow\\[0.3cm] 2x=\ln\left|\frac{z^2+C_1^2}{C_2}\right|\longrightarrow e^{2x}=\frac{z^2+C_1^2}{C_2}\\[0.3cm] \boxed{C_2=\frac{z^2+C_1^2}{e^{2x}}}\\[0.3cm]

Conclusion,



Solution of equation isφ((x+y),e2x(z2+(x+y)2))=0\boxed{\text{Solution of equation is}\,\,\varphi\left((x+y),e^{-2x}(z^2+(x+y)^2)\right)=0}



ANSWER

Question (i)



z=f1(y+x)+xf2(y+x)12lncos(2xc)dxz=f_1(y+x)+x\cdot f_2(y+x)-\frac{1}{2}\cdot\int\ln|\cos(2x-c)|dx

Question (ii)



φ((x+y),e2x(z2+(x+y)2))=0\varphi\left((x+y),e^{-2x}(z^2+(x+y)^2)\right)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS