Question (i)
( D 2 − 2 D D ′ + [ D ′ ] 2 ) z = tan ( x − y ) ⟶ z = C . F . + P . I . \left(D^2-2DD'+[D']^2\right)z=\tan(x-y)\longrightarrow\\[0.3cm]
z=C.F.+P.I. ( D 2 − 2 D D ′ + [ D ′ ] 2 ) z = tan ( x − y ) ⟶ z = C . F . + P . I .
1 STEP: We try to find C.F.
( D 2 − 2 D D ′ + [ D ′ ] 2 ) z = 0 \left(D^2-2DD'+[D']^2\right)z=0 ( D 2 − 2 D D ′ + [ D ′ ] 2 ) z = 0
The auxillary equation is
m 2 − 2 m + 1 = 0 ⟶ m 1 , 2 = 1 m^2-2m+1=0\longrightarrow\\[0.3cm]
m_{1,2}=1 m 2 − 2 m + 1 = 0 ⟶ m 1 , 2 = 1
Then,
C . F . = f 1 ( y + 1 ⋅ x ) + x ⋅ f 2 ( y + 1 ⋅ x ) C . F . = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) C.F.=f_1(y+1\cdot x)+x\cdot f_2(y+1\cdot x)\\[0.3cm]
\boxed{C.F.=f_1(y+x)+x\cdot f_2(y+x)} C . F . = f 1 ( y + 1 ⋅ x ) + x ⋅ f 2 ( y + 1 ⋅ x ) C . F . = f 1 ( y + x ) + x ⋅ f 2 ( y + x )
2 STEP: We try to find P.I.
Let us give some theory to understand how to solve this equation:
If F ( x , y ) F(x,y) F ( x , y ) is any function, resolve F ( D , D ′ ) F(D,D') F ( D , D ′ ) into linear factors say
( D − m 1 D ′ ) , ( D − m 2 D ′ ) , … , ( D − m n D ′ ) (D-m_1D'),(D-m_2D'),\ldots,(D-m_nD') ( D − m 1 D ′ ) , ( D − m 2 D ′ ) , … , ( D − m n D ′ )
then,
P . I . = 1 ( D − m 1 D ′ ) ⋅ … ( D − m n D ′ ) F ( x , y ) P.I.=\displaystyle\frac{1}{(D-m_1D')\cdot\ldots(D-m_nD')}F(x,y) P . I . = ( D − m 1 D ′ ) ⋅ … ( D − m n D ′ ) 1 F ( x , y )
Note:
( 1 ) 1 ( D − m D ′ ) F ( x , y ) = ∫ F ( x , c − m x ) d x , where y = c − m x ( 1 ) 1 ( D + m D ′ ) F ( x , y ) = ∫ F ( x , c + m x ) d x , where y = c + m x (1)\,\,\frac{1}{(D-mD')}F(x,y)=\int F(x,c-mx)dx,\,\,\text{where}\,\,y=c-mx\\[0.3cm]
(1)\,\,\frac{1}{(D+mD')}F(x,y)=\int F(x,c+mx)dx,\,\,\text{where}\,\,y=c+mx\\[0.3cm] ( 1 ) ( D − m D ′ ) 1 F ( x , y ) = ∫ F ( x , c − m x ) d x , where y = c − m x ( 1 ) ( D + m D ′ ) 1 F ( x , y ) = ∫ F ( x , c + m x ) d x , where y = c + m x
In our case,
P . I . = 1 ( D − 1 ⋅ D ′ ) ( D − 1 ⋅ D ′ ) tan ( x − y ) = = 1 ( D − 1 ⋅ D ′ ) ∫ tan ( x − ( c − 1 x ) ) d x = [ 1 x + y = c ] = = 1 ( D − 1 ⋅ D ′ ) ∫ tan ( 2 x − c ) d x = = 1 ( D − 1 ⋅ D ′ ) ( − 1 2 ⋅ ln ∣ cos ( 2 x − c ) ∣ ) = = ∫ ( − 1 2 ⋅ ln ∣ cos ( 2 x − c ) ∣ ) d x P.I.=\frac{1}{(D-1\cdot D')(D-1\cdot D')}\tan(x-y)=\\[0.3cm]
=\frac{1}{(D-1\cdot D')}\int\tan(x-(c-1x))dx=[1x+y=c]=\\[0.3cm]
=\frac{1}{(D-1\cdot D')}\int\tan(2x-c)dx=\\[0.3cm]
=\frac{1}{(D-1\cdot D')}\left(\frac{-1}{2}\cdot\ln|\cos(2x-c)|\right)=\\[0.3cm]
=\int\left(\frac{-1}{2}\cdot\ln|\cos(2x-c)|\right)dx P . I . = ( D − 1 ⋅ D ′ ) ( D − 1 ⋅ D ′ ) 1 tan ( x − y ) = = ( D − 1 ⋅ D ′ ) 1 ∫ tan ( x − ( c − 1 x )) d x = [ 1 x + y = c ] = = ( D − 1 ⋅ D ′ ) 1 ∫ tan ( 2 x − c ) d x = = ( D − 1 ⋅ D ′ ) 1 ( 2 − 1 ⋅ ln ∣ cos ( 2 x − c ) ∣ ) = = ∫ ( 2 − 1 ⋅ ln ∣ cos ( 2 x − c ) ∣ ) d x
(More information about ∫ tan ( x ) d x \int\tan(x)dx ∫ tan ( x ) d x : https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions )
Conclusion,
P . I . = − 1 2 ⋅ ∫ ln ∣ cos ( 2 x − c ) ∣ d x \boxed{P.I.=-\frac{1}{2}\cdot\int\ln|\cos(2x-c)|dx} P . I . = − 2 1 ⋅ ∫ ln ∣ cos ( 2 x − c ) ∣ d x
General conclusion,
z = C . F . + P . I . ⟶ z = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) − 1 2 ⋅ ∫ ln ∣ cos ( 2 x − c ) ∣ d x z=C.F.+P.I.\longrightarrow\\[0.3cm]
\boxed{z=f_1(y+x)+x\cdot f_2(y+x)-\frac{1}{2}\cdot\int\ln|\cos(2x-c)|dx} z = C . F . + P . I . ⟶ z = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) − 2 1 ⋅ ∫ ln ∣ cos ( 2 x − c ) ∣ d x
Question (ii)
z ( p − q ) = z 2 + ( x + y ) 2 ⟶ z p + ( − z ) q = ( z 2 + ( x + y ) 2 ) z(p-q)=z^2+(x+y)^2\longrightarrow\\[0.3cm]
zp+(-z)q=(z^2+(x+y)^2) z ( p − q ) = z 2 + ( x + y ) 2 ⟶ z p + ( − z ) q = ( z 2 + ( x + y ) 2 )
The auxillary equation is
d x z = d y − z = d z z 2 + ( x + y ) 2 \frac{dx}{z}=\frac{dy}{-z}=\frac{dz}{z^2+(x+y)^2}\\[0.3cm] z d x = − z d y = z 2 + ( x + y ) 2 d z Then,
d x z = d y − z ⟶ d x 1 = d y − 1 ⟶ d x + d y = 0 ⟶ d ( x + y ) = 0 ⟶ x + y = C 1 d x z = d z z 2 + ( x + y ) 2 ⟶ d x = z d z z 2 + C 1 2 ⟶ x = 1 2 ⋅ ∫ d ( z 2 ) z 2 + C 1 2 ⟶ x = 1 2 ⋅ ln ∣ z 2 + C 1 2 ∣ − 1 2 ln ∣ C 2 ∣ ⟶ 2 x = ln ∣ z 2 + C 1 2 C 2 ∣ ⟶ e 2 x = z 2 + C 1 2 C 2 C 2 = z 2 + C 1 2 e 2 x \frac{dx}{z}=\frac{dy}{-z}\longrightarrow\frac{dx}{1}=\frac{dy}{-1}\longrightarrow\\[0.3cm]
dx+dy=0\longrightarrow d(x+y)=0\longrightarrow\\[0.3cm]
\boxed{x+y=C_1}\\[0.3cm]
\frac{dx}{z}=\frac{dz}{z^2+(x+y)^2}\longrightarrow dx=\frac{zdz}{z^2+C_1^2}\longrightarrow\\[0.3cm]
x=\frac{1}{2}\cdot\int\frac{d(z^2)}{z^2+C_1^2}\longrightarrow x=\frac{1}{2}\cdot\ln|z^2+C_1^2|-\frac{1}{2}\ln|C_2|\longrightarrow\\[0.3cm]
2x=\ln\left|\frac{z^2+C_1^2}{C_2}\right|\longrightarrow e^{2x}=\frac{z^2+C_1^2}{C_2}\\[0.3cm]
\boxed{C_2=\frac{z^2+C_1^2}{e^{2x}}}\\[0.3cm] z d x = − z d y ⟶ 1 d x = − 1 d y ⟶ d x + d y = 0 ⟶ d ( x + y ) = 0 ⟶ x + y = C 1 z d x = z 2 + ( x + y ) 2 d z ⟶ d x = z 2 + C 1 2 z d z ⟶ x = 2 1 ⋅ ∫ z 2 + C 1 2 d ( z 2 ) ⟶ x = 2 1 ⋅ ln ∣ z 2 + C 1 2 ∣ − 2 1 ln ∣ C 2 ∣ ⟶ 2 x = ln ∣ ∣ C 2 z 2 + C 1 2 ∣ ∣ ⟶ e 2 x = C 2 z 2 + C 1 2 C 2 = e 2 x z 2 + C 1 2 Conclusion,
Solution of equation is φ ( ( x + y ) , e − 2 x ( z 2 + ( x + y ) 2 ) ) = 0 \boxed{\text{Solution of equation is}\,\,\varphi\left((x+y),e^{-2x}(z^2+(x+y)^2)\right)=0} Solution of equation is φ ( ( x + y ) , e − 2 x ( z 2 + ( x + y ) 2 ) ) = 0
ANSWER
Question (i)
z = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) − 1 2 ⋅ ∫ ln ∣ cos ( 2 x − c ) ∣ d x z=f_1(y+x)+x\cdot f_2(y+x)-\frac{1}{2}\cdot\int\ln|\cos(2x-c)|dx z = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) − 2 1 ⋅ ∫ ln ∣ cos ( 2 x − c ) ∣ d x
Question (ii)
φ ( ( x + y ) , e − 2 x ( z 2 + ( x + y ) 2 ) ) = 0 \varphi\left((x+y),e^{-2x}(z^2+(x+y)^2)\right)=0 φ ( ( x + y ) , e − 2 x ( z 2 + ( x + y ) 2 ) ) = 0
Comments