Question (i)
(D2−2DD′+[D′]2)z=tan(x−y)⟶z=C.F.+P.I.
1 STEP: We try to find C.F.
(D2−2DD′+[D′]2)z=0
The auxillary equation is
m2−2m+1=0⟶m1,2=1
Then,
C.F.=f1(y+1⋅x)+x⋅f2(y+1⋅x)C.F.=f1(y+x)+x⋅f2(y+x)
2 STEP: We try to find P.I.
Let us give some theory to understand how to solve this equation:
If F(x,y) is any function, resolve F(D,D′) into linear factors say
(D−m1D′),(D−m2D′),…,(D−mnD′)
then,
P.I.=(D−m1D′)⋅…(D−mnD′)1F(x,y)
Note:
(1)(D−mD′)1F(x,y)=∫F(x,c−mx)dx,wherey=c−mx(1)(D+mD′)1F(x,y)=∫F(x,c+mx)dx,wherey=c+mx
In our case,
P.I.=(D−1⋅D′)(D−1⋅D′)1tan(x−y)==(D−1⋅D′)1∫tan(x−(c−1x))dx=[1x+y=c]==(D−1⋅D′)1∫tan(2x−c)dx==(D−1⋅D′)1(2−1⋅ln∣cos(2x−c)∣)==∫(2−1⋅ln∣cos(2x−c)∣)dx
(More information about ∫tan(x)dx: https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions)
Conclusion,
P.I.=−21⋅∫ln∣cos(2x−c)∣dx
General conclusion,
z=C.F.+P.I.⟶z=f1(y+x)+x⋅f2(y+x)−21⋅∫ln∣cos(2x−c)∣dx
Question (ii)
z(p−q)=z2+(x+y)2⟶zp+(−z)q=(z2+(x+y)2)
The auxillary equation is
zdx=−zdy=z2+(x+y)2dzThen,
zdx=−zdy⟶1dx=−1dy⟶dx+dy=0⟶d(x+y)=0⟶x+y=C1zdx=z2+(x+y)2dz⟶dx=z2+C12zdz⟶x=21⋅∫z2+C12d(z2)⟶x=21⋅ln∣z2+C12∣−21ln∣C2∣⟶2x=ln∣∣C2z2+C12∣∣⟶e2x=C2z2+C12C2=e2xz2+C12 Conclusion,
Solution of equation isφ((x+y),e−2x(z2+(x+y)2))=0
ANSWER
Question (i)
z=f1(y+x)+x⋅f2(y+x)−21⋅∫ln∣cos(2x−c)∣dx
Question (ii)
φ((x+y),e−2x(z2+(x+y)2))=0
Comments