We use the method of separation of variables
"u(x,t)=X(x)T(t)\\to\\left\\{\\begin{array}{l}\n\\displaystyle\\frac{\\partial u}{\\partial t}=\\displaystyle\\frac{\\partial\\left(X(x)T(t)\\right)}{\\partial t}=X(x)T'(t)\\\\[0.3cm]\n\\displaystyle\\frac{\\partial^2 u}{\\partial x^2}=\\displaystyle\\frac{\\partial^2\\left(X(x)T(t)\\right)}{\\partial x^2}=X''(x)T(t)\n\\end{array}\\right."Then,
"\\frac{\\partial u}{\\partial t}=4\\cdot\\frac{\\partial^2 u}{\\partial x^2}\\to\\left.X(x)T'(t)=4X''(x)T(t)\\right|\\div\\left(4X(x)T(t)\\right)\\\\[0.3cm]\n\\frac{T'(t)}{4T(t)}=\\frac{X''(x)}{X(x)}=-\\lambda\\to\n\\left\\{\\begin{array}{l}\nX''(x)+\\lambda X(x)=0\\\\[0.3cm]\nT'(t)+4\\lambda T(t)=0\n\\end{array}\\right."The boundary conditions take the form
"\\left\\{\\begin{array}{l}\nu(0,t)=X(0)T(t)=0\\to\\boxed{X(0)=0}\\\\[0.3cm]\nu(5,t)=X(5)T(t)=0\\to\\boxed{X(5)=0}\n\\end{array}\\right."
First, we solve the Sturm-Liouville problem for the function "X(x)"
In our case,
"\\left\\{\\begin{array}{l}\nX''(x)+\\lambda X(x)=0\\\\[0.1cm]\nX(0)=0\\\\[0.1cm]\nX(5)=0\n\\end{array}\\right."We are looking for a solution in the form
"X(x)=e^{kx}\\to X''(x)=k^2\\cdot e^{kx}\\to\\\\[0.3cm]\nk^2\\cdot e^{kx}+\\lambda\\cdot e^{kx}=0\\to e^{kx}\\cdot\\left(k^2+\\lambda\\right)=0\\to k^2=-\\lambda\\\\[0.3cm]\n\\left[\\begin{array}{l}\nk_1=\\sqrt{-\\lambda}=i\\sqrt{\\lambda}\\\\[0.1cm]\nk_2=-\\sqrt{-\\lambda}=-i\\sqrt{\\lambda}\n\\end{array}\\right." Conclusion,
"X(x)=A_1e^{i\\sqrt{\\lambda}x}+A_2e^{-i\\sqrt{\\lambda}x}\\equiv\nC_1\\cos\\left(\\sqrt{\\lambda}x\\right)+C_2\\sin\\left(\\sqrt{\\lambda}x\\right)\\\\[0.1cm]\nX(0)=0=C_1\\cos\\left(\\sqrt{\\lambda}0\\right)+C_2\\sin\\left(\\sqrt{\\lambda}0\\right)\\\\[0.1cm]\n\\boxed{C_1=0}\\\\[0.1cm]\nX(5)=0=C_2\\sin\\left(5\\sqrt{\\lambda}\\right)\\to5\\sqrt{\\lambda}=n\\pi,n\\in\\mathbb{N}\\\\[0.1cm]\n\\boxed{\\lambda_n=\\left(\\frac{n\\pi}{5}\\right)^2,n\\in\\mathbb{N}}" Then,
"\\boxed{X_n(x)=C_n\\cdot\\sin\\left(\\frac{n\\pi x}{5}\\right),n\\in\\mathbb{N}}"For the function "T(t)" it is necessary to solve the equation
"T'(t)+\\lambda_nT(t)=0\\to\\frac{dT}{dt}=-\\lambda T(t)\\to\\frac{dT}{T}=-\\lambda_n dt\\\\[0.1cm]\n\\ln|T(t)|=-\\lambda_nt+\\ln|A_n|\\to\\boxed{T_n(t)=A_n\\cdot e^{-\\lambda_n t}}" Then, a particular solution to the equation has the form
"u_n(x,t)=X_n(x)T_n(t)=A_n\\cdot e^{-\\lambda_nt}\\cdot C_n\\cdot\\sin\\left(\\frac{n\\pi x}{5}\\right)" And the general solution of the equation has the form
"\\boxed{u(x,t)=\\sum\\limits_{n=1}^{\\infty}u_n(x,t)=\\sum\\limits_{n=1}^{\\infty}B_ne^{-\\lambda_nt}\\sin\\left(\\frac{n\\pi x}{5}\\right)}"
It remains to find an expression for the coefficients "B_n". To do this, we use the initial condition, as well as the condition of orthogonality of the function of the Sturm-Liouville problem (without proof)
"\\int\\limits_0^5\\sin\\left(\\frac{n\\pi x}{5}\\right)\\cdot\\sin\\left(\\frac{n\\pi x}{5}\\right)dx=\\frac{5}{2}\\\\[0.3cm]\n\\int\\limits_0^5\\sin\\left(\\frac{n\\pi x}{5}\\right)\\cdot\\sin\\left(\\frac{m\\pi x}{5}\\right)dx=0\\\\[0.3cm]\n\\boxed{\\int\\limits_0^5\\sin\\left(\\frac{n\\pi x}{5}\\right)\\cdot\\sin\\left(\\frac{m\\pi x}{5}\\right)dx=\\frac{5}{2}\\delta_{nm}}" Then,
"u(x,0)=x=\\sum\\limits_{n=1}^{\\infty}B_n\\sin\\left(\\frac{n\\pi x}{5}\\right)\\to\\\\[0.3cm]\n\\int\\limits_0^5\\times\\left|\\sum\\limits_{n=1}^{\\infty}B_n\\sin\\left(\\frac{n\\pi x}{5}\\right)=x\\right|\\times\\sin\\left(\\frac{m\\pi x}{5}\\right)dx\\to\\\\[0.3cm]\n\\sum\\limits_{n=1}^{\\infty}B_n\\int\\limits_0^5\\sin\\left(\\frac{n\\pi x}{5}\\right)\\sin\\left(\\frac{m\\pi x}{5}\\right)dx=\\int\\limits_0^5 x\\sin\\left(\\frac{m\\pi x}{5}\\right)dx\\to\\\\[0.3cm]\n\\sum\\limits_{n=1}^{\\infty}B_n\\delta_{nm}\\frac{5}{2}=\\int\\limits_0^5 x\\sin\\left(\\frac{m\\pi x}{5}\\right)dx\\to\\\\[0.3cm]\nB_m\\frac{5}{2}=\\int\\limits_0^5 x\\sin\\left(\\frac{m\\pi x}{5}\\right)dx"It remains to calculate the indicated integral. To do this, we use the method of integration by parts
"\\int\\limits_0^5 x\\sin\\left(\\frac{m\\pi x}{5}\\right)dx=\\\\[0.3cm]\n=\\left.\\frac{-5x}{m\\pi}\\cdot\\cos\\left(\\frac{m\\pi x}{5}\\right)\\right|_0^5-\\int\\limits_0^5\\left(-\\frac{5}{m\\pi}\\cos\\left(\\frac{m\\pi x}{5}\\right)\\right)dx=\\\\[0.3cm]\n=-\\frac{25}{m\\pi}\\cdot\\cos(m\\pi)+\\left.\\frac{25}{m^2\\pi^2}\\cdot\\sin\\left(\\frac{m\\pi x}{5}\\right)\\right|_0^5\\to\\\\[0.3cm]\n\\boxed{\\int\\limits_0^5 x\\sin\\left(\\frac{m\\pi x}{5}\\right)dx=-\\frac{25\\cdot(-1)^m}{m\\pi}}" Conclusion,
"B_m\\frac{5}{2}=\\frac{25\\cdot(-1)^{m+1}}{m\\pi}\\to\\boxed{B_m=\\frac{10\\cdot(-1)^{m+1}}{m\\pi}}" ANSWER
"u(x,t)=\\sum\\limits_{n=1}^{\\infty}\\left(\\frac{10\\cdot(-1)^{n+1}}{n\\pi}\\right)e^{-\\lambda_nt}\\sin\\left(\\frac{n\\pi x}{5}\\right)"
"\\lambda_n=\\left(\\frac{n\\pi}{5}\\right)^2,n\\in\\mathbb{N}"
Comments
Leave a comment