We use the method of separation of variables
u ( x , t ) = X ( x ) T ( t ) → { ∂ u ∂ t = ∂ ( X ( x ) T ( t ) ) ∂ t = X ( x ) T ′ ( t ) ∂ 2 u ∂ x 2 = ∂ 2 ( X ( x ) T ( t ) ) ∂ x 2 = X ′ ′ ( x ) T ( t ) u(x,t)=X(x)T(t)\to\left\{\begin{array}{l}
\displaystyle\frac{\partial u}{\partial t}=\displaystyle\frac{\partial\left(X(x)T(t)\right)}{\partial t}=X(x)T'(t)\\[0.3cm]
\displaystyle\frac{\partial^2 u}{\partial x^2}=\displaystyle\frac{\partial^2\left(X(x)T(t)\right)}{\partial x^2}=X''(x)T(t)
\end{array}\right. u ( x , t ) = X ( x ) T ( t ) → ⎩ ⎨ ⎧ ∂ t ∂ u = ∂ t ∂ ( X ( x ) T ( t ) ) = X ( x ) T ′ ( t ) ∂ x 2 ∂ 2 u = ∂ x 2 ∂ 2 ( X ( x ) T ( t ) ) = X ′′ ( x ) T ( t ) Then,
∂ u ∂ t = 4 ⋅ ∂ 2 u ∂ x 2 → X ( x ) T ′ ( t ) = 4 X ′ ′ ( x ) T ( t ) ∣ ÷ ( 4 X ( x ) T ( t ) ) T ′ ( t ) 4 T ( t ) = X ′ ′ ( x ) X ( x ) = − λ → { X ′ ′ ( x ) + λ X ( x ) = 0 T ′ ( t ) + 4 λ T ( t ) = 0 \frac{\partial u}{\partial t}=4\cdot\frac{\partial^2 u}{\partial x^2}\to\left.X(x)T'(t)=4X''(x)T(t)\right|\div\left(4X(x)T(t)\right)\\[0.3cm]
\frac{T'(t)}{4T(t)}=\frac{X''(x)}{X(x)}=-\lambda\to
\left\{\begin{array}{l}
X''(x)+\lambda X(x)=0\\[0.3cm]
T'(t)+4\lambda T(t)=0
\end{array}\right. ∂ t ∂ u = 4 ⋅ ∂ x 2 ∂ 2 u → X ( x ) T ′ ( t ) = 4 X ′′ ( x ) T ( t ) ∣ ÷ ( 4 X ( x ) T ( t ) ) 4 T ( t ) T ′ ( t ) = X ( x ) X ′′ ( x ) = − λ → { X ′′ ( x ) + λ X ( x ) = 0 T ′ ( t ) + 4 λ T ( t ) = 0 The boundary conditions take the form
{ u ( 0 , t ) = X ( 0 ) T ( t ) = 0 → X ( 0 ) = 0 u ( 5 , t ) = X ( 5 ) T ( t ) = 0 → X ( 5 ) = 0 \left\{\begin{array}{l}
u(0,t)=X(0)T(t)=0\to\boxed{X(0)=0}\\[0.3cm]
u(5,t)=X(5)T(t)=0\to\boxed{X(5)=0}
\end{array}\right. ⎩ ⎨ ⎧ u ( 0 , t ) = X ( 0 ) T ( t ) = 0 → X ( 0 ) = 0 u ( 5 , t ) = X ( 5 ) T ( t ) = 0 → X ( 5 ) = 0
First, we solve the Sturm-Liouville problem for the function X ( x ) X(x) X ( x )
In our case,
{ X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 X ( 5 ) = 0 \left\{\begin{array}{l}
X''(x)+\lambda X(x)=0\\[0.1cm]
X(0)=0\\[0.1cm]
X(5)=0
\end{array}\right. ⎩ ⎨ ⎧ X ′′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 X ( 5 ) = 0 We are looking for a solution in the form
X ( x ) = e k x → X ′ ′ ( x ) = k 2 ⋅ e k x → k 2 ⋅ e k x + λ ⋅ e k x = 0 → e k x ⋅ ( k 2 + λ ) = 0 → k 2 = − λ [ k 1 = − λ = i λ k 2 = − − λ = − i λ X(x)=e^{kx}\to X''(x)=k^2\cdot e^{kx}\to\\[0.3cm]
k^2\cdot e^{kx}+\lambda\cdot e^{kx}=0\to e^{kx}\cdot\left(k^2+\lambda\right)=0\to k^2=-\lambda\\[0.3cm]
\left[\begin{array}{l}
k_1=\sqrt{-\lambda}=i\sqrt{\lambda}\\[0.1cm]
k_2=-\sqrt{-\lambda}=-i\sqrt{\lambda}
\end{array}\right. X ( x ) = e k x → X ′′ ( x ) = k 2 ⋅ e k x → k 2 ⋅ e k x + λ ⋅ e k x = 0 → e k x ⋅ ( k 2 + λ ) = 0 → k 2 = − λ [ k 1 = − λ = i λ k 2 = − − λ = − i λ Conclusion,
X ( x ) = A 1 e i λ x + A 2 e − i λ x ≡ C 1 cos ( λ x ) + C 2 sin ( λ x ) X ( 0 ) = 0 = C 1 cos ( λ 0 ) + C 2 sin ( λ 0 ) C 1 = 0 X ( 5 ) = 0 = C 2 sin ( 5 λ ) → 5 λ = n π , n ∈ N λ n = ( n π 5 ) 2 , n ∈ N X(x)=A_1e^{i\sqrt{\lambda}x}+A_2e^{-i\sqrt{\lambda}x}\equiv
C_1\cos\left(\sqrt{\lambda}x\right)+C_2\sin\left(\sqrt{\lambda}x\right)\\[0.1cm]
X(0)=0=C_1\cos\left(\sqrt{\lambda}0\right)+C_2\sin\left(\sqrt{\lambda}0\right)\\[0.1cm]
\boxed{C_1=0}\\[0.1cm]
X(5)=0=C_2\sin\left(5\sqrt{\lambda}\right)\to5\sqrt{\lambda}=n\pi,n\in\mathbb{N}\\[0.1cm]
\boxed{\lambda_n=\left(\frac{n\pi}{5}\right)^2,n\in\mathbb{N}} X ( x ) = A 1 e i λ x + A 2 e − i λ x ≡ C 1 cos ( λ x ) + C 2 sin ( λ x ) X ( 0 ) = 0 = C 1 cos ( λ 0 ) + C 2 sin ( λ 0 ) C 1 = 0 X ( 5 ) = 0 = C 2 sin ( 5 λ ) → 5 λ = nπ , n ∈ N λ n = ( 5 nπ ) 2 , n ∈ N Then,
X n ( x ) = C n ⋅ sin ( n π x 5 ) , n ∈ N \boxed{X_n(x)=C_n\cdot\sin\left(\frac{n\pi x}{5}\right),n\in\mathbb{N}} X n ( x ) = C n ⋅ sin ( 5 nπ x ) , n ∈ N For the function T ( t ) T(t) T ( t ) it is necessary to solve the equation
T ′ ( t ) + λ n T ( t ) = 0 → d T d t = − λ T ( t ) → d T T = − λ n d t ln ∣ T ( t ) ∣ = − λ n t + ln ∣ A n ∣ → T n ( t ) = A n ⋅ e − λ n t T'(t)+\lambda_nT(t)=0\to\frac{dT}{dt}=-\lambda T(t)\to\frac{dT}{T}=-\lambda_n dt\\[0.1cm]
\ln|T(t)|=-\lambda_nt+\ln|A_n|\to\boxed{T_n(t)=A_n\cdot e^{-\lambda_n t}} T ′ ( t ) + λ n T ( t ) = 0 → d t d T = − λ T ( t ) → T d T = − λ n d t ln ∣ T ( t ) ∣ = − λ n t + ln ∣ A n ∣ → T n ( t ) = A n ⋅ e − λ n t Then, a particular solution to the equation has the form
u n ( x , t ) = X n ( x ) T n ( t ) = A n ⋅ e − λ n t ⋅ C n ⋅ sin ( n π x 5 ) u_n(x,t)=X_n(x)T_n(t)=A_n\cdot e^{-\lambda_nt}\cdot C_n\cdot\sin\left(\frac{n\pi x}{5}\right) u n ( x , t ) = X n ( x ) T n ( t ) = A n ⋅ e − λ n t ⋅ C n ⋅ sin ( 5 nπ x ) And the general solution of the equation has the form
u ( x , t ) = ∑ n = 1 ∞ u n ( x , t ) = ∑ n = 1 ∞ B n e − λ n t sin ( n π x 5 ) \boxed{u(x,t)=\sum\limits_{n=1}^{\infty}u_n(x,t)=\sum\limits_{n=1}^{\infty}B_ne^{-\lambda_nt}\sin\left(\frac{n\pi x}{5}\right)} u ( x , t ) = n = 1 ∑ ∞ u n ( x , t ) = n = 1 ∑ ∞ B n e − λ n t sin ( 5 nπ x )
It remains to find an expression for the coefficients B n B_n B n . To do this, we use the initial condition, as well as the condition of orthogonality of the function of the Sturm-Liouville problem (without proof)
∫ 0 5 sin ( n π x 5 ) ⋅ sin ( n π x 5 ) d x = 5 2 ∫ 0 5 sin ( n π x 5 ) ⋅ sin ( m π x 5 ) d x = 0 ∫ 0 5 sin ( n π x 5 ) ⋅ sin ( m π x 5 ) d x = 5 2 δ n m \int\limits_0^5\sin\left(\frac{n\pi x}{5}\right)\cdot\sin\left(\frac{n\pi x}{5}\right)dx=\frac{5}{2}\\[0.3cm]
\int\limits_0^5\sin\left(\frac{n\pi x}{5}\right)\cdot\sin\left(\frac{m\pi x}{5}\right)dx=0\\[0.3cm]
\boxed{\int\limits_0^5\sin\left(\frac{n\pi x}{5}\right)\cdot\sin\left(\frac{m\pi x}{5}\right)dx=\frac{5}{2}\delta_{nm}} 0 ∫ 5 sin ( 5 nπ x ) ⋅ sin ( 5 nπ x ) d x = 2 5 0 ∫ 5 sin ( 5 nπ x ) ⋅ sin ( 5 mπ x ) d x = 0 0 ∫ 5 sin ( 5 nπ x ) ⋅ sin ( 5 mπ x ) d x = 2 5 δ nm Then,
u ( x , 0 ) = x = ∑ n = 1 ∞ B n sin ( n π x 5 ) → ∫ 0 5 × ∣ ∑ n = 1 ∞ B n sin ( n π x 5 ) = x ∣ × sin ( m π x 5 ) d x → ∑ n = 1 ∞ B n ∫ 0 5 sin ( n π x 5 ) sin ( m π x 5 ) d x = ∫ 0 5 x sin ( m π x 5 ) d x → ∑ n = 1 ∞ B n δ n m 5 2 = ∫ 0 5 x sin ( m π x 5 ) d x → B m 5 2 = ∫ 0 5 x sin ( m π x 5 ) d x u(x,0)=x=\sum\limits_{n=1}^{\infty}B_n\sin\left(\frac{n\pi x}{5}\right)\to\\[0.3cm]
\int\limits_0^5\times\left|\sum\limits_{n=1}^{\infty}B_n\sin\left(\frac{n\pi x}{5}\right)=x\right|\times\sin\left(\frac{m\pi x}{5}\right)dx\to\\[0.3cm]
\sum\limits_{n=1}^{\infty}B_n\int\limits_0^5\sin\left(\frac{n\pi x}{5}\right)\sin\left(\frac{m\pi x}{5}\right)dx=\int\limits_0^5 x\sin\left(\frac{m\pi x}{5}\right)dx\to\\[0.3cm]
\sum\limits_{n=1}^{\infty}B_n\delta_{nm}\frac{5}{2}=\int\limits_0^5 x\sin\left(\frac{m\pi x}{5}\right)dx\to\\[0.3cm]
B_m\frac{5}{2}=\int\limits_0^5 x\sin\left(\frac{m\pi x}{5}\right)dx u ( x , 0 ) = x = n = 1 ∑ ∞ B n sin ( 5 nπ x ) → 0 ∫ 5 × ∣ ∣ n = 1 ∑ ∞ B n sin ( 5 nπ x ) = x ∣ ∣ × sin ( 5 mπ x ) d x → n = 1 ∑ ∞ B n 0 ∫ 5 sin ( 5 nπ x ) sin ( 5 mπ x ) d x = 0 ∫ 5 x sin ( 5 mπ x ) d x → n = 1 ∑ ∞ B n δ nm 2 5 = 0 ∫ 5 x sin ( 5 mπ x ) d x → B m 2 5 = 0 ∫ 5 x sin ( 5 mπ x ) d x It remains to calculate the indicated integral. To do this, we use the method of integration by parts
∫ 0 5 x sin ( m π x 5 ) d x = = − 5 x m π ⋅ cos ( m π x 5 ) ∣ 0 5 − ∫ 0 5 ( − 5 m π cos ( m π x 5 ) ) d x = = − 25 m π ⋅ cos ( m π ) + 25 m 2 π 2 ⋅ sin ( m π x 5 ) ∣ 0 5 → ∫ 0 5 x sin ( m π x 5 ) d x = − 25 ⋅ ( − 1 ) m m π \int\limits_0^5 x\sin\left(\frac{m\pi x}{5}\right)dx=\\[0.3cm]
=\left.\frac{-5x}{m\pi}\cdot\cos\left(\frac{m\pi x}{5}\right)\right|_0^5-\int\limits_0^5\left(-\frac{5}{m\pi}\cos\left(\frac{m\pi x}{5}\right)\right)dx=\\[0.3cm]
=-\frac{25}{m\pi}\cdot\cos(m\pi)+\left.\frac{25}{m^2\pi^2}\cdot\sin\left(\frac{m\pi x}{5}\right)\right|_0^5\to\\[0.3cm]
\boxed{\int\limits_0^5 x\sin\left(\frac{m\pi x}{5}\right)dx=-\frac{25\cdot(-1)^m}{m\pi}} 0 ∫ 5 x sin ( 5 mπ x ) d x = = mπ − 5 x ⋅ cos ( 5 mπ x ) ∣ ∣ 0 5 − 0 ∫ 5 ( − mπ 5 cos ( 5 mπ x ) ) d x = = − mπ 25 ⋅ cos ( mπ ) + m 2 π 2 25 ⋅ sin ( 5 mπ x ) ∣ ∣ 0 5 → 0 ∫ 5 x sin ( 5 mπ x ) d x = − mπ 25 ⋅ ( − 1 ) m Conclusion,
B m 5 2 = 25 ⋅ ( − 1 ) m + 1 m π → B m = 10 ⋅ ( − 1 ) m + 1 m π B_m\frac{5}{2}=\frac{25\cdot(-1)^{m+1}}{m\pi}\to\boxed{B_m=\frac{10\cdot(-1)^{m+1}}{m\pi}} B m 2 5 = mπ 25 ⋅ ( − 1 ) m + 1 → B m = mπ 10 ⋅ ( − 1 ) m + 1 ANSWER
u ( x , t ) = ∑ n = 1 ∞ ( 10 ⋅ ( − 1 ) n + 1 n π ) e − λ n t sin ( n π x 5 ) u(x,t)=\sum\limits_{n=1}^{\infty}\left(\frac{10\cdot(-1)^{n+1}}{n\pi}\right)e^{-\lambda_nt}\sin\left(\frac{n\pi x}{5}\right) u ( x , t ) = n = 1 ∑ ∞ ( nπ 10 ⋅ ( − 1 ) n + 1 ) e − λ n t sin ( 5 nπ x )
λ n = ( n π 5 ) 2 , n ∈ N \lambda_n=\left(\frac{n\pi}{5}\right)^2,n\in\mathbb{N} λ n = ( 5 nπ ) 2 , n ∈ N
Comments