Find the value of "n" for which the equation "(n-1)^2u_{xx}-y^{2n}u_{yy}=ny^{2n-1}u_y" is
(1) parabolic
(2) hyperbolic
Second-order PDE
The type of second-order PDE at a point "(x_0,y_0)" depends on the sign of the discriminant defined as
"\\Delta(x_0,y_0)=\\begin{vmatrix}\n 0 & 2(n-1)^2 \\\\\n 2(-y^{2n}) & 0\n\\end{vmatrix}=4(n-1)^2y^{2n}"
(1) parabolic: "\\Delta(x_0,y_0)=0=>4(n-1)^2y^{2n}=0=>n=1 \\ or\\ y=0"
"n=1 \\ or\\ y=0"
(2) hyperbolic: "\\Delta(x_0,y_0)>0=>4(n-1)^2y^{2n}>0=>n\\not=1, y\\not=0"
"n\\not=1, y\\not=0"
Comments
Leave a comment