The voltage and the current relationships in circuit analysis
voltage drop across the inductor
voltage drop across the resistor
voltage drop across the capacitor
Kirchhoff's Second Law
Given that "L=1\\ H,\\ R=1000\\ ohm, \\ C=10^{-6}\\ F,\\ E(t)=12\\ V"
"{d^2q\\over dt^2}+1000{dq \\over dt}+1000000q=12"
The characteristic equation is
"D=(1000)^2-4(1000000)=-3(1000000)"
"r={-1000\\pm i1000\\sqrt{3} \\over 2}"
"q_c=e^{-500t}(c_1\\cos{(500 \\sqrt{3}t)}+c_2\\sin{(500 \\sqrt{3}t)})"
Find the particular solution of the non-homogeneous differential equation using the method of the undetermined coefficients.
Assume that "Q(t)=A" is a solution of the non-homogeneous differential equation where "E(t)=12."
Differentiate the assumption with respect to "t"
Substitute in the original equation
"A=1.2\\times10^{-5}"
"Q(t)=1.2\\times10^{-5}"
"q(t)=e^{-500t}(c_1\\cos{(500 \\sqrt{3}t)}+c_2\\sin{(500 \\sqrt{3}t)})+1.2\\times10^{-5}"
The initial charge of the capacitor is zero
"c_1=-1.2\\times10^{-5}"
The circuit is closed at "t=0: i(0)=q'(0)=0"
"q'(0)=-500(-1.2\\times10^{-5})-0+0+c_2500 \\sqrt{3}=0"
"c_2=-{\\sqrt{3} \\over 1.2}\\times10^5"
"q(t)=e^{-500t}\\big(-1.2\\times10^{-5}\\cos{(500 \\sqrt{3}t)}-{\\sqrt{3} \\over 1.2}\\times10^5 \\sin{(500 \\sqrt{3}t)}\\big)+""+1.2\\times10^{-5}"
"Coulomb: [C]"
Find the steady state charge.
"t\\to\\infin: q_p(t)\\to1.2\\times10^{-5} \\ C"
Comments
Leave a comment