Question #105028
Apply the method of variations of parameters to solve the following differential equations:
1) x^2 y" + xy' - y = x^2 e^x
2) y" + a^2 y = cosec ax
3) solve the equation d^2 y/dx^2 - cotx dy/dx - sin^2 xy = cosx - cos^3 x by changing the independent variable
1
Expert's answer
2020-03-12T12:33:17-0400

1) x2y+xyy=x2exx^2y''+xy'-y=x^2e^x

We will replace

x=et,t=lnxy=dydx=ytxt=ytet=etyty=dydx=(etyt)et=ytetetytet=e2t(ytyt)x=e^t, t=ln|x|\\ y'=\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{y'_t}{e^t}=e^{-t}y'_t\\ y''=\frac{dy'}{dx}=\frac{(e^{-t}\cdot y'_{t})'}{e^t}=\frac{y''_{t}e^{-t}-e^{-t}y'_t}{e^t}=e^{-2t}(y''_t-y'_t)

then

e2te2t(yy)+etetyy=e2teetyy+yy=e2teetyy=e2teete^{2t}e^{-2t}(y''-y')+e^te^{-t}y'-y=e^{2t}\cdot e^{e^t}\\ y''-y'+y'-y=e^{2t}\cdot e^{e^t}\\ y''-y=e^{2t}\cdot e^{e^t}

a)

yy=0λ21=0λ1=1,λ2=1y1=et,y2=ety0=c1et+c2ety''-y=0\\ \lambda^2-1=0\\ \lambda_1=1, \lambda_2=-1\\ y_1=e^t, y_2=e^{-t}\\ y_0=c_1e^t+c_2e^{-t}

b)

y=c1(t)et+c2(t)ety=c_1(t)e^t+c_2(t)e^{-t}\\


{c1et+c2et=0c1etc2et=e2teet2c1et=e2teetc1=12eteetc1=12eteetdt=12eetd(et)==12eet+k1\left\{\begin{matrix} c'_1e^t+c'_2e^{-t}=0 \\ c'_1e^t-c'_2e^{-t}=e^{2t}e^{e^t} \end{matrix}\right.\\ 2c'_1e^t=e^{2t}e^{e^t}\\ c'_1=\frac{1}{2}e^{t}e^{e^t}\\ c_1=\frac{1}{2}\int e^{t}e^{e^t}dt=\frac{1}{2}\int e^{e^t}d(e^t)=\\ =\frac{1}{2}e^{e^t}+k_1


2c2et=e2teetc2=12e3teetc2=12e3teetdt=12e2teetd(et)2c'_2e^{-t}=-e^{2t}e^{e^t}\\ c'_2=-\frac{1}{2}e^{3t}e^{e^t}\\ c_2=-\frac{1}{2}\int e^{3t}e^{e^t}dt=-\frac{1}{2}\int e^{2t}e^{e^t}d(e^t)

let u=etu=e^t then

e2teetdet=u2eudu=u2eu2ueudu==u2eu2(ueueudu)=u2eu2ueu+2euc2=12(u2eu2ueu+2eu)+k2==12(e2teet2eteet+2eet)+k2\int e^{2t}e^{e^t}de^t=\int u^2e^udu=u^2e^u-\int2ue^udu=\\ =u^2e^u-2(ue^u-\int e^udu)=u^2e^u-2ue^u+2e^u\\ c_2=-\frac{1}{2}(u^2e^u-2ue^u+2e^u)+k_2=\\ =-\frac{1}{2}(e^{2t}e^{e^t}-2e^te^{e^t}+2e^{e^t})+k_2


Then

y(t)=(12eet+k1)et++(12(e2teet2eteet+2eet)+k2)ety(x)=(12ex+k1)x++(12(x2ex2xex+2ex)+k2)1xy(t)=(\frac{1}{2}e^{e^t}+k_1)e^t+\\ +(-\frac{1}{2}(e^{2t}e^{e^t}-2e^te^{e^t}+2e^{e^t})+k_2)e^{-t}\\ y(x)=(\frac{1}{2}e^x+k_1)x+\\ +(-\frac{1}{2}(x^2e^x-2xe^x+2e^x)+k_2)\frac{1}{x}\\


2)

y+a2y=cosecax=1sinaxy''+a^2y=cosecax=\frac{1}{sinax}

a)

y+a2y=0λ2+a2=0λ1=ai,λ2=aiy1=cosax,y2=sinaxy0=c1cosax+c2sinaxy''+a^2y=0\\ \lambda^2+a^2=0\\ \lambda_1=ai, \lambda_2=-ai\\ y_1=cosax, y_2=sinax\\ y_0=c_1cosax+c_2sinax


b)

y=c1(x)cosax+c2(x)sinax{c1cosax+c2sinax=0ac1sinax+ac2cosax=1sinaxy=c_{1}(x)cosax+c_2(x)sinax\\ \left\{\begin{matrix} c'_1cosax+c'_2 sinax=0 \\ -a c'_1sinax+ac'_2 cosax=\frac{1}{sinax} \end{matrix}\right.


Δ=cosaxsinaxasinaxacosax=aΔ1=0sinax1sinaxacosax=1Δ2=cosax0asinax1sinax=cosaxsinaxc1=Δ1Δ=1ac1=1adx=xa+k1c2=Δ2Δ=1acosaxsinaxc2=1acosaxsinaxdx=1a2lnsinax+k2\Delta=\begin{vmatrix} cos ax & sinax\\ -asinax & acosax \end{vmatrix}=a\\ \Delta_1=\begin{vmatrix} 0 & sinax\\ \frac{1}{sinax} & acosax \end{vmatrix}=-1\\ \Delta_2=\begin{vmatrix} cos ax & 0\\ -asinax & \frac{1}{sinax} \end{vmatrix}=\frac{cosax}{sinax}\\ c'_{1}=\frac{\Delta_1}{\Delta}=\frac{-1}{a}\\ c_{1}=\int\frac{-1}{a}dx=-\frac{x}{a}+k_1\\ c'_2=\frac{\Delta_2}{\Delta}=\frac{1}{a}\cdot\frac{cosax}{sinax}\\ c_2=\int\frac{1}{a}\cdot\frac{cosax}{sinax}dx=\frac{1}{a^2}ln|sinax|+k_2

y=(xa+k1)cosax+(1a2lnsinax+k2)sinaxy=(-\frac{x}{a}+k_1)cosax+(\frac{1}{a^2}ln|sinax|+k_2)sinax


3) ycotxysin2xy=cosxcos3xy''-\cot x y'- \sin^2x y=\cos x-\cos^3x

We will replace

cosx=t,x=arccost,sinx=1t2y=dydx=ytxt=yt11t2=1t2yty=dydx=yt1t2yt121t2(2t)11t2==yt(1t2)2tyt\cos x=t, x=\arccos t, \sin x =\sqrt{1-t^2}\\ y'=\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{y'_t}{-\frac{1}{\sqrt{1-t^2}}}=-\sqrt{1-t^2} y'_t\\ y''=\frac{dy'}{dx}=\frac{-y''_t\sqrt{1-t^2}-y'_t\frac{1}{2\sqrt{1-t^2}}(-2t)}{-\frac{1}{\sqrt{1-t^2}}}=\\ =y''_t(1-t^2)-2ty'_t

input in equation

y(1t2)tyt1t2(1t2)y(1t2)y=tt3y(1t2)(1t2)y=t(1t2)yy=t,y=y0+y1a)yy=0λ21=0,λ1=1,λ2=1y1=et,y2=ety0=c1et+c2etb)y1=at+by''(1-t^2)-ty'-\frac{t}{\sqrt{1-t^2}}(-\sqrt{1-t^2})y'-\\ -(1-t^2)y=t-t^3\\ y''(1-t^2)-(1-t^2)y=t(1-t^2)\\ y''-y=t,\\ y=y_0+y_1\\ a) y''-y=0\\ \lambda^2-1=0, \lambda_1=1, \lambda_2=-1\\ y_1=e^t, y_2=e^{-t}\\ y_0=c_1e^t+c_2e^{-t}\\ b) y_1=at+b

input in equation

atb=t    a=1,b=0,y1=ty=c1et+c2etty=c1ecosx+c2ecosxcosx-at-b=t\implies a=-1, b=0,\\ y_1=-t\\ y=c_1e^t+c_2e^{-t}-t\\ y=c_1e^{\cos x}+c_2e^{-\cos x}-\cos x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS