Question #105436
Solve differential equations dy/dx=1+(dy/dx)^2.
1
Expert's answer
2020-03-16T11:53:06-0400

Task: dydx=1+(dydx)2\frac{dy}{dx} = 1 + (\frac{dy}{dx})^2 .

Solution: It is convinient to use new variable: f=dydxf = \frac{dy}{dx} (1).

By substitution (1) it is possible to transform initial equation in the following form:

f2f+1=0f^2 -f + 1 = 0

This is an ordinary quadratic equations with the following solution:

D=(1)2411=3f1,2=1±D2=1±3i2f1=12+32i, f2=1232iD = (-1)^2 - 4 \cdot 1 \cdot 1 = -3 \\ f_{1,2} = \frac{1 \pm \sqrt{D}}{2} = \frac{1 \pm \sqrt{3}i}{2} \\ f_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i,\ f_2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i

where i2=1i^2 = -1 — imaginary unit.

By using reversed transform of (1) we can get the solutions:

y1,2=f1,2dxy_{1,2} = \int f_{1, 2} dx

To integrate complex functions it is possible to use the feature of continous contour integrals:

(u(x)+iv(x))dx=u(x)dx+iv(x)dx\int (u(x) + iv(x))dx = \int u(x) dx + i\int v(x)dx

Thus, the solutions are:

y1(x)=f1dx=(12+32i)dx=12dx+i32dx=(12+32i)x+C1y2(x)=f2dx=(1232i)dx=12dxi32dx=(1232i)x+C2y_1(x) = \int f_1 dx = \int (\frac{1}{2} + \frac{\sqrt{3}}{2}i)dx = \int \frac{1}{2}dx + i\int \frac{\sqrt{3}}{2}dx=(\frac{1}{2} + \frac{\sqrt{3}}{2}i)x + C_1 \\ y_2(x) = \int f_2 dx = \int (\frac{1}{2} - \frac{\sqrt{3}}{2}i)dx = \int \frac{1}{2}dx - i\int \frac{\sqrt{3}}{2}dx=(\frac{1}{2} - \frac{\sqrt{3}}{2}i)x + C_2

So, the final solution is:

y(x)=(12±32i)x+Cy(x) = (\frac{1}{2} \pm \frac{\sqrt{3}}{2}i)x + C

Answer: y(x)=(12±32i)x+Cy(x) = (\frac{1}{2} \pm \frac{\sqrt{3}}{2}i)x + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS