Question #105437
Solve the following differential equations changing the independent variables
X^2 d^2y/dx^2 - dy/dx - 4x^3 y= 8x^3 sinx^2 ,X>0.
1
Expert's answer
2020-03-20T17:51:41-0400

Solve


xd2ydx2dydx4x3y=8x3sin(x2), x>0x{d^2y \over dx^2}-{dy \over dx}-4x^3y=8x^3\sin(x^2),\ x>0

Divide by xx


d2ydx21xdydx4x2y=8x2sin(x2){d^2y \over dx^2}-{1 \over x}\cdot{dy \over dx}-4x^2y=8x^2\sin(x^2)

Compare with


y+Py+Qy=Ry''+Py'+Qy=R

We have


P=1x,Q=4x2,R=8x2sin(x2)P=-{1 \over x},Q=-4x^2,R=8x^2\sin(x^2)

Chooze zz such that (dz/dx)2=4x2(dz/dx)^2=4x^2 or dz/dx=2xdz/dx=2x so that z=x2z=x^2


dydx=dydzdzdx=2xdydz{dy \over dx}={dy \over dz}\cdot{dz \over dx}=2x{dy \over dz}

d2ydx2=2dydz+4x2d2ydz2{d^2y \over dx^2}=2{dy \over dz}+4x^2{d^2y \over dz^2}

2dydz+4x2d2ydz21x(2xdydz)4x2y(z)=8x2sin(x2)2{dy \over dz}+4x^2{d^2y \over dz^2}-{1 \over x}(2x{dy \over dz})-4x^2y(z)=8x^2\sin(x^2)

d2ydz2y(z)=2sinz{d^2y \over dz^2}-y(z)=2\sin z

We will get


(D121)y=2sinz(D_1^2-1)y=2\sin z

C.F.=c1ez+c2ezC.F.=c_1e^z+c_2e^{-z}

P.I.=1D121(2sinz)=21121sinz=sinzP.I.={1 \over D_1^2-1}(2\sin z)=2{1 \over -1^2-1}\cdot\sin z=-\sin z

The required solution is


y(z)=c1ez+c2ezsinzy(z)=c_1e^z+c_2e^{-z}-\sin z

y=c1ex2+c2ex2sin(x2)y=c_1e^{x^2}+c_2e^{-x^2}-\sin (x^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS