Solve
Divide by "x"
Compare with
We have
Chooze "z" such that "(dz\/dx)^2=4x^2" or "dz\/dx=2x" so that "z=x^2"
"{d^2y \\over dx^2}=2{dy \\over dz}+4x^2{d^2y \\over dz^2}"
"2{dy \\over dz}+4x^2{d^2y \\over dz^2}-{1 \\over x}(2x{dy \\over dz})-4x^2y(z)=8x^2\\sin(x^2)"
"{d^2y \\over dz^2}-y(z)=2\\sin z"
We will get
"C.F.=c_1e^z+c_2e^{-z}"
"P.I.={1 \\over D_1^2-1}(2\\sin z)=2{1 \\over -1^2-1}\\cdot\\sin z=-\\sin z"
The required solution is
"y=c_1e^{x^2}+c_2e^{-x^2}-\\sin (x^2)"
Comments
Leave a comment