Solve
xdx2d2y−dxdy−4x3y=8x3sin(x2), x>0 Divide by x
dx2d2y−x1⋅dxdy−4x2y=8x2sin(x2) Compare with
y′′+Py′+Qy=R We have
P=−x1,Q=−4x2,R=8x2sin(x2) Chooze z such that (dz/dx)2=4x2 or dz/dx=2x so that z=x2
dxdy=dzdy⋅dxdz=2xdzdy
dx2d2y=2dzdy+4x2dz2d2y
2dzdy+4x2dz2d2y−x1(2xdzdy)−4x2y(z)=8x2sin(x2)
dz2d2y−y(z)=2sinz We will get
(D12−1)y=2sinz
C.F.=c1ez+c2e−z
P.I.=D12−11(2sinz)=2−12−11⋅sinz=−sinz The required solution is
y(z)=c1ez+c2e−z−sinz
y=c1ex2+c2e−x2−sin(x2)
Comments