P(x,y)=bxe2xy;Q(x,y)=ye2xy+x
Px=be2xy+2bye2xy
Qy=e2xy+2xye2xy
The equation is exact if Px=Qy, hence
be2xy(1+2xy)=e2xy(1+2xy)
b=1
The solution of the equation R(x,y)=const , where
R=∫Pdy=∫xe2xydy=2e2xy+h(x)
Rx=Q hence
ye2xy+h′=ye2xy+x
h′=x
h=2x2
The solution of the equation
21(e2xy+x2)=const
Comments