Question #105500
Find the value of b for which the equation
(1 )( ye^2xy + x )dx + bxe^2xy dy = 0
is exact, and hence solve it for that value of b
1
Expert's answer
2020-03-26T11:01:53-0400

P(x,y)=bxe2xy;Q(x,y)=ye2xy+xP(x,y)=bxe^{2xy};Q(x,y)=ye^{2xy}+x

Px=be2xy+2bye2xyP_x=be^{2xy}+2bye^{2xy}

Qy=e2xy+2xye2xyQ_y=e^{2xy}+2xye^{2xy}

The equation is exact if Px=QyP_x=Q_y, hence

be2xy(1+2xy)=e2xy(1+2xy)be^{2xy}(1+2xy)=e^{2xy}(1+2xy)

b=1b=1

The solution of the equation R(x,y)=constR(x,y)=const , where

R=Pdy=xe2xydy=e2xy2+h(x)R=\int Pdy=\int xe^{2xy}dy=\frac{e^{2xy}}{2}+h(x)

Rx=QR_x=Q hence

ye2xy+h=ye2xy+xye^{2xy}+h'=ye^{2xy}+x

h=xh'=x

h=x22h=\frac{x^2}{2}

The solution of the equation

12(e2xy+x2)=const\frac{1}{2}(e^{2xy}+x^2)=const


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS