2 x 2 y ′ ′ + 3 x y ′ − y = 0 , x > 0 2x^2y'' + 3xy'-y=0, \quad x>0 2 x 2 y ′′ + 3 x y ′ − y = 0 , x > 0
y 1 ( x ) = x − 1 , y 2 ( x ) = ? y_1(x) = x^{-1}, \quad y_2(x)=? y 1 ( x ) = x − 1 , y 2 ( x ) = ?
First, divide the equation by 2 x 2 . 2x^2. 2 x 2 . Obtain
y ′ ′ + 3 2 x y ′ − y 2 x 2 = 0 y'' + \frac{3}{2x}y' - \frac{y}{2x^2}=0 y ′′ + 2 x 3 y ′ − 2 x 2 y = 0
Use Liouville's formula to determine a second linearly independent solution of the equation
y 2 = y 1 ∫ e − ∫ P 1 ( x ) d x y 1 2 d x y_2 = y_1\int{\frac{e^{-\int{P_1(x)}dx}}{y_1^2}dx} y 2 = y 1 ∫ y 1 2 e − ∫ P 1 ( x ) d x d x
where P 1 ( x ) = 3 2 x . P_1(x)=\frac{3}{2x}. P 1 ( x ) = 2 x 3 . Substitute y 1 and P 1 y_1 \text{ and } P_1 y 1 and P 1 into the formula.
y 2 = 1 x ∫ e − ∫ 3 / ( 2 x ) d x 1 x 2 d x = 1 x ∫ x 2 e − 3 / 2 ln ( x ) d x = 1 x ∫ x 2 ⋅ 1 x 3 / 2 d x = 1 x ∫ x 1 / 2 d x = 1 x ⋅ 2 3 x 3 / 2 = 2 3 x y_2 = \frac{1}{x}\int{\frac{e^{-\int{3/(2x)dx}}}{\frac{1}{x^2}}dx} = \frac{1}{x}\int{x^2e^{-3/2\ln(x)}dx} = \frac{1}{x}\int{x^2\cdot \frac{1}{x^{3/2}}dx} \\
= \frac{1}{x}\int{x^{1/2}dx} = \frac{1}{x}\cdot \frac{2}{3}x^{3/2} = \frac{2}{3}\sqrt{x} y 2 = x 1 ∫ x 2 1 e − ∫ 3/ ( 2 x ) d x d x = x 1 ∫ x 2 e − 3/2 l n ( x ) d x = x 1 ∫ x 2 ⋅ x 3/2 1 d x = x 1 ∫ x 1/2 d x = x 1 ⋅ 3 2 x 3/2 = 3 2 x
Therefore, the second linearly independent solution is y 2 ( x ) = 2 3 x . y_2(x) = \frac{2}{3}\sqrt{x}. y 2 ( x ) = 3 2 x .
Comments