Question #105508
Using the method of undermined coefficients, find the general solution of the
differential equation
y^iv-2y'''+2y''=3e^-x+2e^-xx+e^-x sin x
1
Expert's answer
2020-03-27T13:32:13-0400

1)Solve homogeneous equation y(4)2y+2y=0y^{(4)}-2y'''+2y''=0.

Its characteristic equation is λ42λ3+2λ2=0\lambda^4-2\lambda^3+2\lambda^2=0, solutions of which are λ1=λ2=0,λ3=1+i,λ4=1i\lambda_1=\lambda_2=0, \lambda_3=1+i, \lambda_4=1-i.

So general solution of this equation is y=Ax+B+ex(Ccosx+Dsinx)y=Ax+B+e^x(C\cos x+D\sin x)

2)Particular soltuion of y(4)2y+2y=3ex+2xex+exsinxy^{(4)}-2y'''+2y''=3e^{-x}+2xe^{-x}+e^{-x}\sin x

Since 1-1 and 1+i-1+i are not roots of the characteristic equation, pariclular solution of y(4)2y+2y=3ex+2xex+exsinxy^{(4)}-2y'''+2y''=3e^{-x}+2xe^{-x}+e^{-x}\sin x is y=(U+Vx)ex+ex(Wcosx+Tsinx)y=(U+Vx)e^{-x}+e^{-x}(W\cos x+T\sin x).

Calculate derivative of z=(α+βx)ex+ex(γcosx+δsinx)z=(\alpha+\beta x)e^{-x}+e^{-x}(\gamma\cos x+\delta\sin x) :

z=βex(α+βx)ex+ex(γsinx+δcosx)z'=\beta e^{-x}-(\alpha+\beta x)e^{-x}+e^{-x}(-\gamma\sin x+\delta\cos x)-

ex(γcosx+δsinx)=-e^{-x}(\gamma\cos x+\delta\sin x)=

=(βx+βα)ex+ex((δγ)cosx+(γδ)sinx)=(-\beta x+\beta-\alpha)e^{-x}+e^{-x}((\delta-\gamma)\cos x+(-\gamma-\delta)\sin x)

Then y=(Vx+VU)ex+y'=(-Vx+V-U)e^{-x}+

+ex((TW)cosx+(WT)sinx)+e^{-x}((T-W)\cos x+(-W-T)\sin x)

y=(Vx2V+U)ex+ex(2Tcosx+2Wsinx)y''=(Vx-2V+U)e^{-x}+e^{-x}(-2T\cos x+2W\sin x)

y=(Vx+3VU)ex+y'''=(-Vx+3V-U)e^{-x}+

+ex((2W+2T)cosx+(2T2W)sinx)+e^{-x}((2W+2T)\cos x+(2T-2W)\sin x)

y(4)=(Vx4V+U)ex+ex(4Wcosx4Tsinx)y^{(4)}=(Vx-4V+U)e^{-x}+e^{-x}(-4W\cos x-4T\sin x)

So y(4)2y+2y=(5Vx14V+5U)ex+y^{(4)}-2y'''+2y''=(5Vx-14V+5U)e^{-x}+

+ex((8W8T)cosx+(8W8T)sinx)+e^{-x}((-8W-8T)\cos x+(8W-8T)\sin x) and we obtain

{14V+5U=35V=28W8T=08W8T=1\begin{cases} -14V+5U=3\\ 5V=2\\ -8W-8T=0\\ 8W-8T=1 \end{cases}

That is V=25,U=4325,T=116,W=116V=\frac{2}{5}, U=\frac{43}{25}, T=-\frac{1}{16}, W=\frac{1}{16}

3)General solution of y(4)2y+2y=3ex+2xex+exsinxy^{(4)}-2y'''+2y''=3e^{-x}+2xe^{-x}+e^{-x}\sin x is y=Ax+B+ex(Ccosx+Dsinx)+y=Ax+B+e^x(C\cos x+D\sin x)+

+125(43+10x)ex+116ex(cosxsinx)+\frac{1}{25}(43+10x)e^{-x}+\frac{1}{16}e^{-x}(\cos x-\sin x)

Answer:

Ax+B+ex(Ccosx+Dsinx)+Ax+B+e^x(C\cos x+D\sin x)+

+125(43+10x)ex+116ex(cosxsinx)+\frac{1}{25}(43+10x)e^{-x}+\frac{1}{16}e^{-x}(\cos x-\sin x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS