Using the method of undermined coefficients, find the general solution of the
differential equation
y^iv-2y'''+2y''=3e^-x+2e^-xx+e^-x sin x
1
Expert's answer
2020-03-27T13:32:13-0400
1)Solve homogeneous equation y(4)−2y′′′+2y′′=0.
Its characteristic equation is λ4−2λ3+2λ2=0, solutions of which are λ1=λ2=0,λ3=1+i,λ4=1−i.
So general solution of this equation is y=Ax+B+ex(Ccosx+Dsinx)
2)Particular soltuion of y(4)−2y′′′+2y′′=3e−x+2xe−x+e−xsinx
Since −1 and −1+i are not roots of the characteristic equation, pariclular solution of y(4)−2y′′′+2y′′=3e−x+2xe−x+e−xsinx is y=(U+Vx)e−x+e−x(Wcosx+Tsinx).
Calculate derivative of z=(α+βx)e−x+e−x(γcosx+δsinx) :
z′=βe−x−(α+βx)e−x+e−x(−γsinx+δcosx)−
−e−x(γcosx+δsinx)=
=(−βx+β−α)e−x+e−x((δ−γ)cosx+(−γ−δ)sinx)
Then y′=(−Vx+V−U)e−x+
+e−x((T−W)cosx+(−W−T)sinx)
y′′=(Vx−2V+U)e−x+e−x(−2Tcosx+2Wsinx)
y′′′=(−Vx+3V−U)e−x+
+e−x((2W+2T)cosx+(2T−2W)sinx)
y(4)=(Vx−4V+U)e−x+e−x(−4Wcosx−4Tsinx)
So y(4)−2y′′′+2y′′=(5Vx−14V+5U)e−x+
+e−x((−8W−8T)cosx+(8W−8T)sinx) and we obtain
⎩⎨⎧−14V+5U=35V=2−8W−8T=08W−8T=1
That is V=52,U=2543,T=−161,W=161
3)General solution of y(4)−2y′′′+2y′′=3e−x+2xe−x+e−xsinx is y=Ax+B+ex(Ccosx+Dsinx)+
Comments