y′′+y′−2y=−6sin2x−18cos2x
Above equation is second order linear nonhomogeneous differential equation with constant coefficients. The general solution of this nonhomogeneous equation is the sum of the general solution y0(x) of the related homogeneous equation (y′′+y′−2y=0) and a particular solution y1(x) of the nonhomogeneous equation:
y(x)=y0(x)+y1(x).
The characteristic equation is:
k2+k−2=0
Roots of this equation is k1=1 and k2=−2, so general solution of the related homogeneous equation is y0(x)=C1ex+C2e−2x.
Let's use method of undetermined coefficient for obtaining of the particular solution of the nonhomogeneous equation y1(x)=Asin2x+Bcos2x.
Differentials:
y1′(x)=2Acos2x−2Bsin2x
y1′′(x)=−4Asin2x−4Bcos2x
Substitute obtained functions into the initial equation:
−4Asin2x−4Bcos2x+2Acos2x−2Bsin2x−2(Asin2x+Bcos2x)=−6sin2x−18cos2x
−4Asin2x−4Bcos2x+2Acos2x−2Bsin2x−2Asin2x−2Bcos2x=−6sin2x−18cos2x
sin2x(−4A−2B−2A)+cos2x(−4B+2A−2B)=−6sin2x−18cos2x
sin2x(−6A−2B)+cos2x(2A−6B)=−6sin2x−18cos2x
{−6A−2B=−62A−6B=−18
{−6A−2B=−66A−18B=−54
−20B=−60
B=3
2A−6⋅3=−18
2A−18=−18
A=0
So, y1(x)=3cos2x and y(x)=C1ex+C2e−2x+3cos2x.
According to the initial value problem:
y′(x)=C1ex−2C2e−2x−6sin2x
{C1e0+C2e0+3cos0=2C1e0−2C2e0−6sin0=2
{C1+C2+3=2C1−2C2=2
{C1+C2=−1C1−2C2=2
3C2=−3
C2=−1
C1−1=−1
C1=0
Finally, y(x)=−e−2x+3cos2x
Comments