Question #105506
Solve the following initial value problem
d^2y/dx^2+dx/dy-2y=-6sin 2x-18cos2x
y(0)=2,y'(0)=2
1
Expert's answer
2020-03-26T16:16:55-0400

y+y2y=6sin2x18cos2xy''+y'-2y=-6 \sin 2x -18 \cos 2x

Above equation is second order linear nonhomogeneous differential equation with constant coefficients. The general solution of this nonhomogeneous equation is the sum of the general solution y0(x)y_0 (x) of the related homogeneous equation (y+y2y=0y''+y'-2y=0) and a particular solution y1(x)y_1(x) of the nonhomogeneous equation:

y(x)=y0(x)+y1(x)y(x)=y_0(x)+y_1(x).

The characteristic equation is:

k2+k2=0k^2+k-2=0

Roots of this equation is k1=1k_1=1 and k2=2k_2=-2, so general solution of the related homogeneous equation is y0(x)=C1ex+C2e2xy_0 (x)=C_1e^x+C_2e^{-2x}.

Let's use method of undetermined coefficient for obtaining of the particular solution of the nonhomogeneous equation y1(x)=Asin2x+Bcos2xy_1(x)=A \sin 2x +B \cos 2x.

Differentials:

y1(x)=2Acos2x2Bsin2xy_1'(x)=2A \cos 2x -2B \sin 2x

y1(x)=4Asin2x4Bcos2xy_1''(x)=-4A \sin 2x -4B \cos 2x

Substitute obtained functions into the initial equation:

4Asin2x4Bcos2x+2Acos2x2Bsin2x2(Asin2x+Bcos2x)=6sin2x18cos2x-4A \sin 2x -4B \cos 2x+2A \cos 2x -2B \sin 2x-2(A \sin 2x +B \cos 2x)=-6 \sin 2x -18 \cos 2x

4Asin2x4Bcos2x+2Acos2x2Bsin2x2Asin2x2Bcos2x=6sin2x18cos2x-4A \sin 2x -4B \cos 2x+2A \cos 2x -2B \sin 2x-2A \sin 2x -2B \cos 2x=-6 \sin 2x -18 \cos 2x

sin2x(4A2B2A)+cos2x(4B+2A2B)=6sin2x18cos2x\sin 2x (-4A-2B-2A)+ \cos 2x (-4B +2A -2B)=-6 \sin 2x -18 \cos 2x

sin2x(6A2B)+cos2x(2A6B)=6sin2x18cos2x\sin 2x (-6A-2B)+ \cos 2x (2A-6B)=-6 \sin 2x -18 \cos 2x

{6A2B=62A6B=18\begin{cases} -6A-2B=-6 \\ 2A-6B=-18 \end{cases}

{6A2B=66A18B=54\begin{cases} -6A-2B=-6 \\ 6A-18B=-54 \end{cases}

20B=60-20B=-60

B=3B=3

2A63=182A-6 \cdot 3=-18

2A18=182A-18=-18

A=0A=0

So, y1(x)=3cos2xy_1(x)=3 \cos 2x and y(x)=C1ex+C2e2x+3cos2xy(x)=C_1e^x+C_2e^{-2x}+3 \cos 2x.

According to the initial value problem:

y(x)=C1ex2C2e2x6sin2xy'(x)=C_1e^x-2C_2e^{-2x}-6 \sin 2x

{C1e0+C2e0+3cos0=2C1e02C2e06sin0=2\begin{cases} C_1e^0+C_2e^0+3 \cos 0=2 \\ C_1e^0-2C_2e^0-6 \sin 0=2 \end{cases}

{C1+C2+3=2C12C2=2\begin{cases} C_1+C_2+3 =2 \\ C_1-2C_2=2 \end{cases}

{C1+C2=1C12C2=2\begin{cases} C_1+C_2 =-1 \\ C_1-2C_2=2 \end{cases}

3C2=33C_2=-3

C2=1C_2=-1

C11=1C_1-1 =-1

C1=0C_1=0


Finally, y(x)=e2x+3cos2xy(x)=-e^{-2x}+3 \cos 2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS