Question #105507
Identify the type of the differential equation y =xy'+1-lny' and hence
solve it
1
Expert's answer
2020-03-27T14:27:38-0400

y=ln(dy/dx)+xdy/dx+1y=-ln(dy/dx)+xdy/dx+1

This is Clairaut equation

Differentiate both sides with respect to x

dydx=xd2ydx2+dydxd2ydx2dydx{\frac {dy} {dx}}=x{\frac {d^2y} {dx^2}}+{\frac {dy} {dx}}-{\frac {{\frac {d^2y} {dx^2}}} {{\frac {dy} {dx}}}}

Collect in terms of d2ydx2{\frac {d^2y} {dx^2}}

dydx=dydx+d2ydx2(x1dydx){\frac {dy} {dx}}={\frac {dy} {dx}}+{\frac {d^2y} {dx^2}}(x-{\frac {1} {{\frac {dy} {dx}}}})

Then

d2ydx2(x1dydx)=0{\frac {d^2y} {dx^2}}(x-{\frac {1} {{\frac {dy} {dx}}}})=0

Solve

d2ydx2=0{\frac {d^2y} {dx^2}}=0 and (x1dydx)=0(x-{\frac {1} {{\frac {dy} {dx}}}})=0 separately:

For d2ydx2=0{\frac {d^2y} {dx^2}}=0 :

dydx=0dx=C1{\frac {dy} {dx}}=\int 0dx=C_1

Substitute y=C1y'=C_1 into initial equation

y=ln(C1)+C1x+1y=-ln(C_1)+C_1x+1

For (x1dydx)=0(x-{\frac {1} {{\frac {dy} {dx}}}})=0 :

dydx=1x{\frac {dy} {dx}}={\frac {1} {x}}

Substitute y=1/xy'=1/x into initial equation

y=ln(1x)+2y=-ln({\frac {1} {x}})+2


Answer: y=ln(C1)+C1x+1y=-ln(C_1)+C_1x+1 or y=ln(1x)+2y=-ln({\frac {1} {x}})+2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS