y=−ln(dy/dx)+xdy/dx+1
This is Clairaut equation
Differentiate both sides with respect to x
dxdy=xdx2d2y+dxdy−dxdydx2d2y
Collect in terms of dx2d2y
dxdy=dxdy+dx2d2y(x−dxdy1)
Then
dx2d2y(x−dxdy1)=0
Solve
dx2d2y=0 and (x−dxdy1)=0 separately:
For dx2d2y=0 :
dxdy=∫0dx=C1
Substitute y′=C1 into initial equation
y=−ln(C1)+C1x+1
For (x−dxdy1)=0 :
dxdy=x1
Substitute y′=1/x into initial equation
y=−ln(x1)+2
Answer: y=−ln(C1)+C1x+1 or y=−ln(x1)+2
Comments