Given Differential equation is,
d y d x + ( x 1 − x 2 ) y = x × y \frac{dy}{dx} +( \frac {x}{1 -x^2}) y= x \times \sqrt y d x d y + ( 1 − x 2 x ) y = x × y Divide by y \sqrt y y on both sides of the above equation, then we get
1 y d y d x + ( x 1 − x 2 ) y = x . . . . . . . . . . . . . ( A ) \frac {1}{\sqrt y} \frac{dy}{dx} + (\frac {x}{1 -x^2}) \sqrt y = x .............(A) y 1 d x d y + ( 1 − x 2 x ) y = x ............. ( A ) Let y = t \sqrt y = t y = t
Differentiate with respect to x x x
Then,
1 2 y d y d x = d t d x \frac {1}{2\sqrt y} \frac {dy}{dx} = \frac {dt}{dx} 2 y 1 d x d y = d x d t Then, the equation (A) becomes
2 d t d x + ( x 1 − x 2 ) t = x 2 \frac {dt}{dx} + (\frac {x}{1 -x^2}) t = x 2 d x d t + ( 1 − x 2 x ) t = x divide by 2
d t d x + 1 2 ( x 1 − x 2 ) t = x 2 \frac {dt}{dx} + \frac {1}{2} (\frac {x}{1 -x^2}) t = \frac {x}{2} d x d t + 2 1 ( 1 − x 2 x ) t = 2 x
This is the Linear Differential equation in the form d t d x + P ( x ) t = Q ( x ) \frac {dt}{dx} + P(x) t= Q(x) d x d t + P ( x ) t = Q ( x )
Integrating factor = I.F = e ∫ p ( x ) d x = e ∫ 1 2 ( x 1 − x 2 ) d x e^ {\int p(x) dx} = e^ {\int \frac {1}{2} (\frac {x}{1 -x^2})dx} e ∫ p ( x ) d x = e ∫ 2 1 ( 1 − x 2 x ) d x
= e 1 4 ∫ 2 x 1 − x 2 d x = e − 1 4 l n ( 1 − x 2 ) = 1 1 − x 2 4 = e^{\frac {1}{4}\int \frac {2x}{1-x^2}dx } = e^ {- \frac {1}{4} ln {( 1- x^2) }} = \frac {1}{\sqrt[4] {1-x^2}} = e 4 1 ∫ 1 − x 2 2 x d x = e − 4 1 l n ( 1 − x 2 ) = 4 1 − x 2 1 Now the solution of the linear differential equation is
t × ( I . F ) = ∫ ( I . F ) × Q × d x + c t \times (I.F)= \int (I.F) \times Q \times dx + c t × ( I . F ) = ∫ ( I . F ) × Q × d x + c
t × 1 1 − x 2 4 = ∫ 1 1 − x 2 4 × x 2 d x + c t \times \frac {1}{\sqrt[4] {1- x^2}} = \int \frac {1}{\sqrt[4] {1- x^2}} \times \frac {x}{2} \space dx +c t × 4 1 − x 2 1 = ∫ 4 1 − x 2 1 × 2 x d x + c
t 1 − x 2 4 = − 1 4 ∫ − 2 x 1 − x 2 4 d x + c \frac {t}{\sqrt [4] {1-x^2}} = -\frac {1}{4}\int \frac {-2x}{\sqrt [4]{1-x^2}} dx + c 4 1 − x 2 t = − 4 1 ∫ 4 1 − x 2 − 2 x d x + c
use substitution method on right side Integration,
Let 1 − x 2 = m t h e n − 2 x d x = d m 1 - x^2 = m \space then \space - 2x dx = dm 1 − x 2 = m t h e n − 2 x d x = d m
t 1 − x 2 4 = − 1 4 ∫ 1 m 4 d m + c \frac {t}{\sqrt [4] {1-x^2}} = -\frac {1}{4}\int \frac {1}{\sqrt [4]{m}} dm + c 4 1 − x 2 t = − 4 1 ∫ 4 m 1 d m + c
t 1 − x 2 4 = − 1 4 × m 1 4 + 1 1 4 + 1 + c \frac {t}{\sqrt [4] {1-x^2}} = -\frac {1}{4} \times \frac {m^ {\frac {1}{4} + 1}}{\frac {1}{4}+1}+ c 4 1 − x 2 t = − 4 1 × 4 1 + 1 m 4 1 + 1 + c
t 1 − x 2 4 = − 4 4 × m 5 4 5 + c \frac {t}{\sqrt [4] {1-x^2}} = -\frac {4}{4} \times \frac {m^ {\frac {5}{4} }}{5}+ c 4 1 − x 2 t = − 4 4 × 5 m 4 5 + c
t 1 − x 2 4 = − ( 1 − x 2 ) 5 4 5 + c \frac {t}{\sqrt [4] {1-x^2}} = -\frac {(1-x^2)^ {\frac {5}{4} }}{5}+ c 4 1 − x 2 t = − 5 ( 1 − x 2 ) 4 5 + c y ( 0 ) = 1 y(0)=1 y ( 0 ) = 1
1 1 − 0 4 = − ( 1 − 0 ) 5 4 5 + c \frac {1}{\sqrt [4] {1-0}} = -\frac {(1-0)^ {\frac {5}{4} }}{5}+ c 4 1 − 0 1 = − 5 ( 1 − 0 ) 4 5 + c
1 = − 1 5 + c c = 1 + 1 5 = 6 5 1 = \frac{-1}{5} + c \\
c = 1 + \frac {1}{5} = \frac {6}{5} 1 = 5 − 1 + c c = 1 + 5 1 = 5 6
So the solution of the equation is,
y 1 − x 2 4 = − ( 1 − x 2 ) 5 4 5 + 6 5 \frac {\sqrt {y}}{\sqrt [4] {1-x^2}} = -\frac {(1-x^2)^ {\frac {5}{4} }}{5}+ \frac{6}{5} 4 1 − x 2 y = − 5 ( 1 − x 2 ) 4 5 + 5 6
Comments
Dear Himanshu, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks a lot for help.