u(x,y)=excos(y)∂x∂u=excos(y)A harmonic function satisfies theCauchy Riemann’s equation∂y∂v=∂x∂u=excos(y)∴v=∫excos(y)dy=exsin(y)+Cf(z)=u(x,y)+iv(x,y)=ex(cos(y)+isin(y))+C=ex⋅eiy+C=ex+iy+C=ez+C∴The original function isf(z)=ez+CwhereCis an arbitrary constant.
Comments
Leave a comment