Answer to Question #142497 in Complex Analysis for Doll

Question #142497
Prove that u(x,y) given by the following is harmonic obtain it's corresponding conjugate and original function f(z)
u(x,y)=x^2-y^2
1
Expert's answer
2020-11-05T16:51:19-0500

u(x,y)=x2y2ux=2x,2ux2=2uy=2y,2uy2=2Since2ux2+2uy2=0,uis harmonicSince a harmonic function is analyticux=vy2x=vyv=2xdyv=2xy+CThe complex conjugate is2xy+Cf(z)=u+jv=(x2y2)+j2xy+C=(x+jy)2+C=z2+CWhereCis an arbitrary constant obtainedfrom the integration process\displaystyle u(x, y) = x^2 - y^2\\ \frac{\partial u}{\partial x} = 2x, \frac{\partial^2 u}{\partial x^2} = 2\\ \frac{\partial u}{\partial y} = -2y, \frac{\partial^2 u}{\partial y^2} = -2\\ \textsf{Since}\, \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \, u\, \textsf{is harmonic}\\ \textsf{Since a harmonic function is analytic}\\ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}\\ 2x = \frac{\partial v}{\partial y}\\ v = \int 2x\, \mathrm{d}y\\ v = 2xy + C\\ \therefore \textsf{The complex conjugate is}\, 2xy + C\\ \therefore\, f(z) = u + jv = (x^2 - y^2) + j2xy + C= (x + jy)^2 + C = z^2 + C\\ \textsf{Where}\, C \, \textsf{is an arbitrary constant obtained}\\\textsf{from the integration process}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment