u(x,y)=x2−y2∂x∂u=2x,∂x2∂2u=2∂y∂u=−2y,∂y2∂2u=−2Since∂x2∂2u+∂y2∂2u=0,uis harmonicSince a harmonic function is analytic∂x∂u=∂y∂v2x=∂y∂vv=∫2xdyv=2xy+C∴The complex conjugate is2xy+C∴f(z)=u+jv=(x2−y2)+j2xy+C=(x+jy)2+C=z2+CWhereCis an arbitrary constant obtainedfrom the integration process
Comments
Leave a comment