Solve the equation 2z^4 -14z^3+33z^2-26z+10 = 0, zeC [where C denotes the set of complex numbers] given that it has root 3+i
1
Expert's answer
2020-11-08T19:08:22-0500
2z4−14z3+33z2−26z+10=0.By the fundamental theorem ofalgebra, if3+iis a root, its conjugate,3−iis also a root of the polynomial.(z−(3+i))(z−(3−i))is a factor of the polynomial(z−(3+i))(z−(3−i))=z2−(3+i+3−i)z+(3+i)(3−i)=z2−6z+10By long divisionz2−6z+10∣2z2−2z+12z4−14z3+33z2−26z+10−(2z2−12z3+20z2)−2z3+13z2−26z+10−(−2z3+12z2−20z)z2−6z+10−(z2−6z+10)0∴(z2−6z+10)(2z2−2z+1)=02z2−2z+1=0z=42±4−8=22±2i=1±iz=1+i,1−i∴z=1+i,1−i,3+i,3−i
Comments