Question #141167
Solve the equation 2z^4 -14z^3+33z^2-26z+10 = 0, zeC [where C denotes the set of complex numbers] given that it has root 3+i
1
Expert's answer
2020-11-08T19:08:22-0500

2z414z3+33z226z+10=0.By the fundamental theorem ofalgebra, if3+iis a root, its conjugate,3iis also a root of the polynomial.(z(3+i))(z(3i))is a factor of the polynomial(z(3+i))(z(3i))=z2(3+i+3i)z+(3+i)(3i)=z26z+10By long divisionz26z+102z22z+12z414z3+33z226z+10(2z212z3+20z2)2z3+13z226z+10(2z3+12z220z)z26z+10(z26z+10)0(z26z+10)(2z22z+1)=02z22z+1=0z=2±484=2±2i2=1±iz=1+i,1iz=1+i,1i,3+i,3i\displaystyle\\ 2z^4 -14z^3+33z^2-26z+10 = 0. \\ \textsf{By the fundamental theorem of}\\ \textsf{algebra, if}\, 3 + i \, \textsf{is a root, its conjugate,}\\ 3 - i \, \textsf{is also a root of the polynomial.}\\ (z - (3 + i))(z - (3 - i))\, \textsf{is a factor of the polynomial}\\ (z - (3 + i))(z - (3 - i)) \\= z^2 - (3 + i + 3 - i)z + (3 + i)(3 - i) \\=z^2 - 6z + 10 \\ \textsf{By long division}\\ z^2 - 6z + 10 | 2z^2 - 2z + 1\\ 2z^4 -14z^3+33z^2-26z+10 \\ -(2z^2 - 12z^3 + 20z^2)\\ -2z^3 + 13z^2 -26z + 10\\ -(-2z^3 + 12z^2 - 20z)\\ z^2 - 6z + 10\\ -(z^2 - 6z + 10)\\ \underline{0}\\ \therefore (z^2 - 6z + 10)(2z^2 - 2z + 1) = 0\\ 2z^2 - 2z + 1 = 0\\ \begin{aligned} z &= \frac{2 \pm \sqrt{4 - 8}}{4} \\&= \frac{2 \pm 2i}{2} = 1 \pm i \end{aligned}\\ z = 1 + i, 1 - i\\ \therefore z = 1 + i, 1 - i, 3 + i, 3 - i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS