Сauchy integral formula: f(z0)=12πi∫cf(z)(z−z0)f(z_0) = \frac{1}{2\pi i}\int_c \frac{f(z)}{(z-z_0)}f(z0)=2πi1∫c(z−z0)f(z)
∫cz2ezdz=∫cz3ezzdzf(z)=z3ez,z0=0\int_c z^2 e^zdz = \int_c \frac{z^3e^z}{z}dz \\ f(z) = z^3 e^z, z_0 = 0∫cz2ezdz=∫czz3ezdzf(z)=z3ez,z0=0
So ∫cz2ez=2πif(z0)=2πi∗0∗e0=0\int_cz^2e^z = 2\pi i f(z_0) = 2\pi i *0*e^0 = 0∫cz2ez=2πif(z0)=2πi∗0∗e0=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments