z3+Pz2+6z+Q=0,PandQ∈Rhas a solution5−i(5−i)3+P(5−i)2+6(5−i)+Q=0125+3(5)2(−i)+3(5)(−i)2+(−i)3+P(25−10i−1)+(30−6i)+Q=0(125−75i−15+i)+P(25−10i−1)+(30−6i)+Q=0(110−74i)+P(24−10i)+(30−6i)+Q=0+0iComparing the real and imaginary parts to0110+24P+30+Q=0−80−10P=010P=−80,P=10−80=−8140+24P+Q=0140+24(−8)+Q=0140−192+Q=0Q=52∴P=−8,Q=52.∴z3+Pz2+6z+Q=z3−8z2+6z+52=0By the fundamental theorem of Algebra,if the root of a polynomial equationis a complex number, the polynomialhas its conjugate as another root.Therefore5+iis also a root of the equation.∴(z−(5−i))(z−(5+i))is a factor of the polynomial.(z−(5−i))(z−(5+i))=z2−(5−i+5+i)z+(5−i)(5+i)=z2−10z+26z2−10z+26z3−8z2+6z+52=z+2(a)z=−2,5+iare the other two solutionsto the equation(b)P=−8,Q=52
Comments