Let "z= \\cos \\theta +i\\sin\\theta." Then "z^4= \\cos 4\\theta +i\\sin4\\theta." Hence "z^4=-1\\Rightarrow \\cos 4\\theta =-1, \\sin 4\\theta=0." Hence "4\\theta= 2k\\pi+\\pi." Hence "\\theta= k\\pi\/2 +\\pi\/4."
Hence "z=\\cos (k\\pi\/2 +\\pi\/4)+isin(k\\pi\/2+\\pi\/4)." Now "sin , cos" being periodic of period "2\\pi," "z" has distinct values for "k=0,1,2,3." Hence for 4th root of -8 the solutions are "8^{1\/4}[cos(k\\pi\/2+\\pi\/4)+i sin(k\\pi\/2+\\pi\/4)]"
Comments
Leave a comment