"z\\rightarrow \\frac{1}{z} ." Hence "(x+iy)\\rightarrow \\frac{1}{x+iy}=\\frac{x-iy}{x^2+y^2}" . Let "u=\\frac{x}{x^2+y^2}, v= \\frac{-y}{x^2+y^2}." Then "(u-\\frac{1}{2k})^2+ v^2= u^2+v^2-\\frac{u}{k} +\\frac{1}{4k^2} = \\frac{x^2+y^2}{(x^2+y^2)^2}-\\frac{u}{k}+\\frac{1}{4k^2}" "=\\frac{1}{x^2+y^2}-\\frac{u}{k}+\\frac{1}{4k^2}" But here "x=k" is the given line. Hence "u=\\frac{k}{x^2+y^2}\\Rightarrow \\frac{u}{k}=\\frac{1}{x^2+y^2}" . Hence RHS= "\\frac{1}{4k^2}". Let "w=u+iv." Then "|w-\\frac{1}{2k}|=\\sqrt{(u-\\frac{1}{2k})^2+v^2}= \\frac{1}{2k .}"
Hence the image of the line is the circle.
Comments
Leave a comment