According to Euler's formula:
"z^{n}+z^{-n} = 2cosnx"
"16 \\cdot cos^{4}x = (2 \\cdot cosx)^{4} = (z + z^{-1})^{4}"
Thus, applying binomial formula:
"128 \\cdot cos^{4}x = z^{4} + 4\\cdot z^{2} + 6 + 4\\cdot z^{-2} + z^{-4} = 2cos4x + 8 cos2x + 6"
Thus, "cos^{4}x = \\frac{2\\cdot cos4x + 8\\cdot cos2x + 6}{128}= \\frac{cos4x + 4\\cdot cos2x + 3}{64}"
According to Euler's formula:
"z^{n}-z^{-n} = 2i\\cdot sinnx"
"8 \\cdot sin^{3}x = i(2i \\cdot sinx)^{3} = i(z - z^{-1})^{3}"
Thus, applying binomial formula:
"8 \\cdot sin^{3}x = i \\cdot (z^{3} - 3\\cdot z + 3\\cdot z^{-1} - z^{-3}) = i \\cdot (2i \\cdot sin3x -6i \\cdot sinx) = 6 sinx - 2sin3x"
Thus, "sin^{3}x = \\frac{3sinx - sin3x}{4}"
"sinx \\cdot cos4x = \\cfrac{1}{2} \\cdot (sin5x - sin 3x)"
"sinx \\cdot cos2x = \\cfrac{1}{2} \\cdot (sin3x - sin x)"
"sin3x \\cdot cos4x = \\cfrac{1}{2} \\cdot (sin7x - sin x)"
"sin3x \\cdot cos2x = \\cfrac{1}{2} \\cdot (sin5x + sin x)"
Thus, "cos^{4}x \\cdot sin^{3}x = \\cfrac{1}{256}(3sinx - sin3x) \\cdot(cos4x + 4 \\cdot cos2x +3) ="
"=\\cfrac{1}{512}(3sin5x - 3sin3x - sin7x + sinx +12 sin 3x - 12sinx -4sin5x - 4sinx + 9sinx - 3sin3x)=\\cfrac{1}{512}\\cdot (6sin3x - sin5x - sin7x - 6sinx)"
Comments
Leave a comment