Answer to Question #137552 in Complex Analysis for Axwell Alesso Lee

Question #137552
Express cos^4
θ sin^3
θ in terms of multiples of angles.
1
Expert's answer
2020-10-14T18:27:35-0400

According to Euler's formula:

zn+zn=2cosnxz^{n}+z^{-n} = 2cosnx

16cos4x=(2cosx)4=(z+z1)416 \cdot cos^{4}x = (2 \cdot cosx)^{4} = (z + z^{-1})^{4}

Thus, applying binomial formula:

128cos4x=z4+4z2+6+4z2+z4=2cos4x+8cos2x+6128 \cdot cos^{4}x = z^{4} + 4\cdot z^{2} + 6 + 4\cdot z^{-2} + z^{-4} = 2cos4x + 8 cos2x + 6

Thus, cos4x=2cos4x+8cos2x+6128=cos4x+4cos2x+364cos^{4}x = \frac{2\cdot cos4x + 8\cdot cos2x + 6}{128}= \frac{cos4x + 4\cdot cos2x + 3}{64}


According to Euler's formula:

znzn=2isinnxz^{n}-z^{-n} = 2i\cdot sinnx

8sin3x=i(2isinx)3=i(zz1)38 \cdot sin^{3}x = i(2i \cdot sinx)^{3} = i(z - z^{-1})^{3}

Thus, applying binomial formula:

8sin3x=i(z33z+3z1z3)=i(2isin3x6isinx)=6sinx2sin3x8 \cdot sin^{3}x = i \cdot (z^{3} - 3\cdot z + 3\cdot z^{-1} - z^{-3}) = i \cdot (2i \cdot sin3x -6i \cdot sinx) = 6 sinx - 2sin3x

Thus, sin3x=3sinxsin3x4sin^{3}x = \frac{3sinx - sin3x}{4}


sinxcos4x=12(sin5xsin3x)sinx \cdot cos4x = \cfrac{1}{2} \cdot (sin5x - sin 3x)

sinxcos2x=12(sin3xsinx)sinx \cdot cos2x = \cfrac{1}{2} \cdot (sin3x - sin x)

sin3xcos4x=12(sin7xsinx)sin3x \cdot cos4x = \cfrac{1}{2} \cdot (sin7x - sin x)

sin3xcos2x=12(sin5x+sinx)sin3x \cdot cos2x = \cfrac{1}{2} \cdot (sin5x + sin x)


Thus, cos4xsin3x=1256(3sinxsin3x)(cos4x+4cos2x+3)=cos^{4}x \cdot sin^{3}x = \cfrac{1}{256}(3sinx - sin3x) \cdot(cos4x + 4 \cdot cos2x +3) =

=1512(3sin5x3sin3xsin7x+sinx+12sin3x12sinx4sin5x4sinx+9sinx3sin3x)=1512(6sin3xsin5xsin7x6sinx)=\cfrac{1}{512}(3sin5x - 3sin3x - sin7x + sinx +12 sin 3x - 12sinx -4sin5x - 4sinx + 9sinx - 3sin3x)=\cfrac{1}{512}\cdot (6sin3x - sin5x - sin7x - 6sinx)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment