According to Euler's formula:
zn+z−n=2cosnx
16⋅cos4x=(2⋅cosx)4=(z+z−1)4
Thus, applying binomial formula:
128⋅cos4x=z4+4⋅z2+6+4⋅z−2+z−4=2cos4x+8cos2x+6
Thus, cos4x=1282⋅cos4x+8⋅cos2x+6=64cos4x+4⋅cos2x+3
According to Euler's formula:
zn−z−n=2i⋅sinnx
8⋅sin3x=i(2i⋅sinx)3=i(z−z−1)3
Thus, applying binomial formula:
8⋅sin3x=i⋅(z3−3⋅z+3⋅z−1−z−3)=i⋅(2i⋅sin3x−6i⋅sinx)=6sinx−2sin3x
Thus, sin3x=43sinx−sin3x
sinx⋅cos4x=21⋅(sin5x−sin3x)
sinx⋅cos2x=21⋅(sin3x−sinx)
sin3x⋅cos4x=21⋅(sin7x−sinx)
sin3x⋅cos2x=21⋅(sin5x+sinx)
Thus, cos4x⋅sin3x=2561(3sinx−sin3x)⋅(cos4x+4⋅cos2x+3)=
=5121(3sin5x−3sin3x−sin7x+sinx+12sin3x−12sinx−4sin5x−4sinx+9sinx−3sin3x)=5121⋅(6sin3x−sin5x−sin7x−6sinx)
Comments
Leave a comment