Show that
a)z+z*=2 Re z=2x
b)z-z*=2i Im z=2iy
c)z/z*={x^2-y^2/x^2+y^2}+i{2xy/x^2+y^2}
z=x+iyz∗=x−iya)z+z∗=x+iy+x−iy=2xb)z−z∗=x+iy−(x−iy)=2iyc)zz∗=x+iyx−iy=(x+iy)∗(x−iy)(x−iy)∗(x−iy)=x2+2ixy+y2x2−y2=x2+y2x2−y2+2ixyx2−y2z=x+iy\newline z^*=x-iy\newline a) z+z^*=x+iy+x-iy=2x\newline b) z-z^*=x+iy-(x-iy)=2iy\newline c) \dfrac{z}{z^*}=\dfrac{x+iy}{x-iy}=\dfrac{(x+iy)*(x-iy)}{(x-iy)*(x-iy)}=\dfrac{x^2+2ixy+y^2}{x^2-y^2}=\dfrac{x^2+y^2}{x^2-y^2}+\dfrac{2ixy}{x^2-y^2}z=x+iyz∗=x−iya)z+z∗=x+iy+x−iy=2xb)z−z∗=x+iy−(x−iy)=2iyc)z∗z=x−iyx+iy=(x−iy)∗(x−iy)(x+iy)∗(x−iy)=x2−y2x2+2ixy+y2=x2−y2x2+y2+x2−y22ixy
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments