Question #130154

Show that

a)z+z*=2 Re z=2x

b)z-z*=2i Im z=2iy

c)z/z*={x^2-y^2/x^2+y^2}+i{2xy/x^2+y^2}


1
Expert's answer
2020-08-23T17:58:25-0400

z=x+iyz=xiya)z+z=x+iy+xiy=2xb)zz=x+iy(xiy)=2iyc)zz=x+iyxiy=(x+iy)(xiy)(xiy)(xiy)=x2+2ixy+y2x2y2=x2+y2x2y2+2ixyx2y2z=x+iy\newline z^*=x-iy\newline a) z+z^*=x+iy+x-iy=2x\newline b) z-z^*=x+iy-(x-iy)=2iy\newline c) \dfrac{z}{z^*}=\dfrac{x+iy}{x-iy}=\dfrac{(x+iy)*(x-iy)}{(x-iy)*(x-iy)}=\dfrac{x^2+2ixy+y^2}{x^2-y^2}=\dfrac{x^2+y^2}{x^2-y^2}+\dfrac{2ixy}{x^2-y^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS